MS8628/8629/8630

Zero drift, single power supply, input and output rail to rail high precision amplifier

description

MS8628/MS8629/MS8630 are all output amplitude rail-to-rail, broadband, low noise, self-stabilized zero amplifiers with ultra-low offset, drift and bias current characteristics. They are powered by a single power supply of 1.8V to 5V (or dual power supplies of ± 0.9 V to ± 2.5 V).

The MS8628/MS8629/MS8630 offers the characteristic advantages previously only available to expensive self-stabilizing zero or chopper amplifiers. Additionally, it significantly reduces the digital switch noise present in most chopper-stabilized amplifiers. The MS8629's ultra-low offset voltage, offset voltage drift, and noise ensure that drift within the operating temperature range is nearly zero, making it highly advantageous for position and pressure sensors, medical devices, and strain gauge amplifier applications. Many systems can leverage the MS8629's rail-to-rail input and output swing capability to reduce input bias complexity and maximize signal-to-noise ratio.

The rated temperature range of the MS8628/MS 8629/MS8630 is from-40° to 125°, extending the industrial temperature range. The MS8628 offers three plastic packages: a 5-pin SOT-23 and an 8-pin narrow SOP. The MS8629 provides two plastic packages: a standard 8-pin narrow SOP and an MSOP. The MS8630 quad amplifier offers two plastic packages: a 14-pin narrow SOP and a 14-pin TSSOP.

main features

- Minimum noise self-stabilized zero amplifier
- Low derating voltage: 2µV (typ)
- Input offset drift: 0.05µV/
- Track-to-track input and output swing
- Single power supply operating range of 1.8V to 5.5V
- Voltage gain: 126dB (TYP) (working voltage 5V)
- Power suppression ratio: 123dB (TYP)
- Common-mode rejection ratio: 136dB (TYP)
- Very low input bias current: 11pA
- Low operating current: 0.8mA (TYP) per channel
- Overload recovery time: 50us (working voltage 5

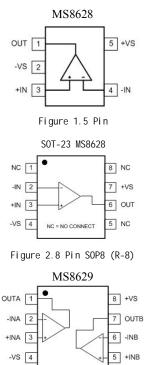


Figure 3.8 SOP8 pin and MSOP8 pin 8

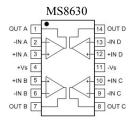


Figure 4.14 Pin SOP14 and pin TSSOP14

appl y

- Car sensors
- Pressure and position sensors
- Strain gauge amplifier
- medical instruments
- Thermocouple amplifier
- Precision current detection
- Photo diode amplifier

V)

- No external components required
- Pass automotive application certification

Product specification classification

Product	Packaging form	Print the name
MS8628	SOT23-5/SOP8	MS8628
MS8629	SOP8/MSOP8	MS8629
MS8630	SOP14	MS8630

Hangzhou Ruimeng Technology Co., LTD http://www.relmon.com

Version number: 2.1 2015.10.10 Page 1 of 15

Absolute rating

Parameter	Symbol	Parameter range	Uni t
Supply voltage	VS	6	V
Input pin voltage		-Vs-0.3 to (+Vs) +0.3	V
Differential input voltage		-5 to 5 (or power supply voltage,	V
		whichever is smaller)	
Range of junction temperature		$-65{\sim}150$	°C
Working temperature	TA	$-40 \sim 125$	°C
Storage temperature	Tstg	$-65 \sim 150$	°C
Pin temperature range (weld-		300	<u></u> ℃
ing, 60 seconds)		300	C
ESD protection: human body		4000	V
mode HBM machine mode MM		200	V

pay attention to:

Exceeding the aforementioned absolute maximum values may cause permanent damage to the device. These are only the maximum values and do not indicate that the device will function properly under these conditions or any other conditions exceeding the specifications shown in the operational section of this technical specification. Long-term operation at the maximum absolute values can affect the reliability of the device.

MS8628/8629/8630

Electrical parameters (5V) (If no special mention, Vs = +5V, VCM = +2.5V, Vo = +2.5V, TA = 25.)

Param eter			Test conditio n	Least val ue		esentative value	Crest value	Uni t	
Input characte	eristic	s							
Input offset	vol -	V _{os}				2	5	μN	
tage		V OS	$-40^\circ\!\mathrm{C} \le \mathrm{T_A} \le +125^\circ\!\mathrm{C}$				10	μ	
Input MS	8628/ 58629					30	100	PA	
bi as Appl y current	MS 8630	I _B				100	300	PA	
			$-40^\circ\!\mathrm{C} \le \mathrm{T_A} \le +125^\circ\!\mathrm{C}$				1.5	nA	
Input offset rent	cur-	I _{os}	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$			40	200 250	рA	
Input voltage range	;			0			5	V	
Cmrr		CMRR	VCM = 0V to $5V$	120		140			
GIII I		CMAA	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$	115		130		dB	
Large sigr qain	al	A _{VO}	RL= $10k \Omega$, Vo= 0. 3V to 4.7V	127		145		dB	
garn			$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$	120		135			
Input offset volt- age drift		$\Delta V_{OS} / \Delta_T$	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$			0.03	0.05	μV/°C	
Output charact	teristi	С							
Output high		V	$RL = 100k \Omega$ to $-Vs$	4.99		4.996		V	
level		V _{OH}	RL = $10k \Omega$ to $-V_S$	4.99		4.995		V	
			$RL = 100k \Omega$ to $+V_S$			1	5	— mV	
Output low		V_{OL}	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$			2	5		
level		V OL	$RL = 10k \Omega$ to $+V_S$			10	20	– mV	
			$-40^\circ\!\mathrm{C} \leq \mathrm{T_A} \leq +125^\circ\!\mathrm{C}$			15	20		
Short-circuit current		I _{SC}	Vo= 2.5V, RL = 10 Ω to GND	25		50		mA	
Out					30			mA	
put		Io	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$			15		mA	
Power consumpt	tion			1	1			1	
Power supply rejection ratio		PSRR	Vs =1.8V to 5.5V, $- \le +125^{\circ}$ C	$40^{\circ}C \leq T_A$	115	130		dB	
Quiescent		(per magni	- $V_0 = V_S/2$			0.85	1.1	<u> </u>	
current		fication Implement) $-40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$				1.0	1.2	mA	
Dynamic charad			I		<u>ı </u>		1	1	
Gain bandwi- dth product		GBP	Av = +100			3.8		MHz	
Pumping rate	SR		Av = +1, RL = $10k \Omega$			1.25		V/μ	
Overload re- covery time						0.05		ms	
Noise characte	eristic	:							
Vol tage noi se	e_n	p-p	0.1Hz to 10Hz			0.50		μV_{P-}	
Vol tage noi se densi ty	2	e_n	f = 1kHz			22		nV/\sqrt{P}	

Current noise density i_n f = 10Hz	5	fA/\sqrt{Hz}
---	---	----------------

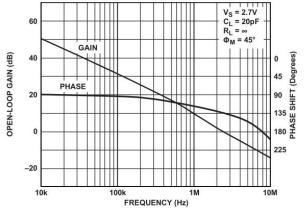
Hangzhou Ruimeng Technology Co., LTD http://www.relmon.com

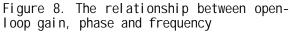
Version number: 2.1 2015.10.10 Page 3 of 15

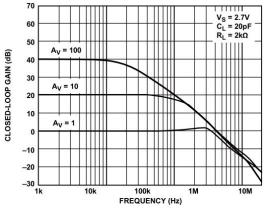
MS8628/8629/8630

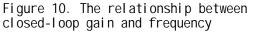
Electrical parameters (2.7V)

(lf no sp	pecial me	ention, V	/s = +2.7V, VCM = +1.3	5V, Vo =	+1.3	5V, TA = 2	5.)		
Param eter	S	Symbol	Test conditio n	Least val ue		esentative value	Crest value	Uni t	
Input char	acteristi	cs	·						
Input offs age	set volt-		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			0.5	5 10	μN	
Input	MS8628/ MS8629					30	100	PA	
bias Apply current	MS 8630					100	300	PA	
			$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			1.0	1.5	nA	
Input offs ent	set curr-		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			50	200 250	рA	
Input vol nge	tage ra-			0			2.7	V	
Cmr	rr	CMR	VCM = 0V to 2.7V	115		130		dB	
		R	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$	110		120			
Large s gai		A_{V}	RL= 10k Ω , Vo= 0.3V to 2.4V	110		140		dB	
gui		0	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$	105		130			
ane drift		$\Delta V_{OS} / \Delta$	$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$			0.03	0.05	µV/℃	
Output cha	racteri sti	С		-					
Output hi	igh	V _{OH}	$RL = 100k \Omega$ to $-V_S$	2.68		2.695		V	
level			$RL = 10k \Omega$ to $-V_S$	2.67		2.68		V	
			$RL = 100k \Omega$ to $+Vs$			1	5	mV	
Output I	ow	V _{OL}	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$			2	5	- mV - mV	
level			$RL = 10k \Omega$ to $+V_S$			10	20		
			$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$			15	20		
Short-circ current		I_{SC}	Vo= 2. 5V, RL = 10 Ω to GND	10		15		mA	
Out		-				10		mA	
put		Ιο	$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$			5		mA	
Power cons	umption								
Power sup rejectio ratio		PSRR	Vs =1.8V to 5.5V, -40° +125°C	$C \le T_A \le$	115	130		dB	
Qui escer	nt	I	$V_0 = V_S/2$			0.75	1.0	mA	
current		I_Q	$-40^{\circ}\mathrm{C} \leq \mathrm{T_{A}} \leq +125^{\circ}\mathrm{C}$			0.9	1.2		
Dynamic ch	aracteri s	tis							
Gain band dth produ		GBP	Av = +100		3. 3			MHz	
Pumpinq rate	9	SR	Av = +1, RL = $10k \Omega$		1.0			V/µs	
Overload r covery tim						0.05		ms	
Noise char	acteristi	•	1	I			I <u> </u>	1	
Vol tage noi se	e e	p - p	0.1Hz to 10Hz			0.50		μV_{P-P}	
Voltage n	oi se	e_n	f = 1kHz			22		nV/\sqrt{Hz}	


densi ty				
Current noise density	i_n	f = 10Hz	5	fA/\sqrt{Hz}


Hangzhou Ruimeng Technology Co., LTD http://www.relmon.com


Version number: 2.1 2015.10.10 Page 4 of 15


MS8628/8629/8630

Typical performance parameters

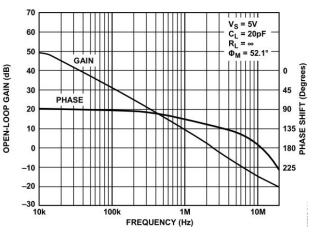


Figure 9. The relationship between openloop gain, phase and frequency

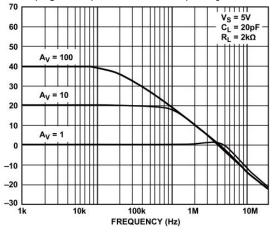
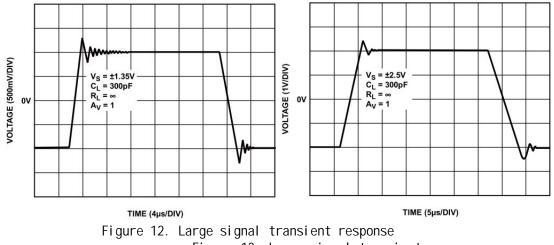
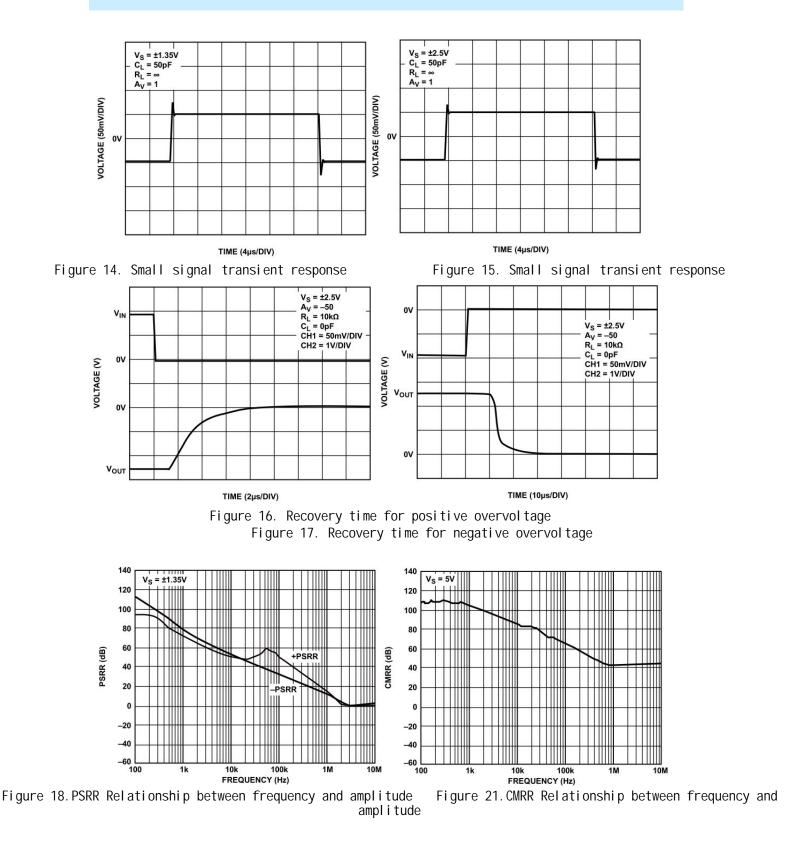



Figure 11. The relationship between closedloop gain and frequency



CLOSED-LOOP GAIN (dB)

Figure 13. Large signal transient response

MS8628/8629/8630

Typical performance parameters

MS8628/8629/8630

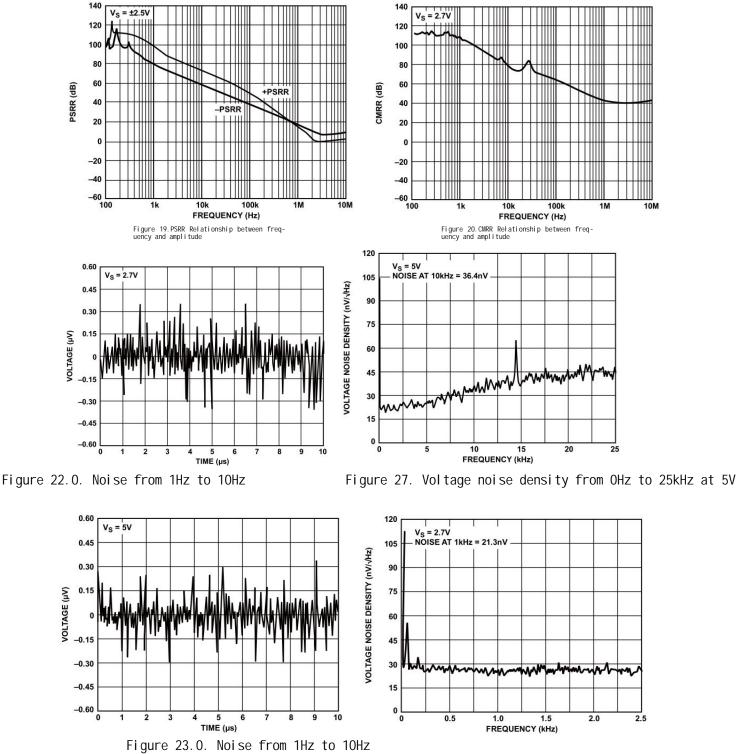
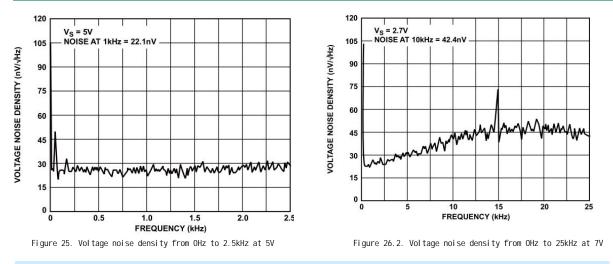



Figure 24.2 Voltage noise density from OHz to 2.5kHz at 7V

MS8628/8629/8630

Typical application

infrared sensor

Infrared (IR) sensors, especially infrared temperature sensors, are increasingly used in temperature measurements across various applications, such as automotive climate control, ear thermometers, home insulation analysis, and automotive diagnostic maintenance. The output signal of these sensors is relatively weak, thus requiring high gain, and they have extremely low offset voltage and drift to avoid DC errors.

When using inter-stage AC coupling (see Figure 28), low offset and drift can prevent the output of the input amplifier from drifting to saturation. Low input bias current minimizes errors generated by the impedance of the sensor's output. Similar to pressure sensors, after temperature measurement calibration, the amplifier has extremely low time and temperature drift, which eliminates additional errors. The low 1/f noise also improves the SNR of DC measurements over periods (typically more than one-fifth of a second).

The circuit gain shown in Figure 62 is 10,000, which can amplify the AC signal from 100 μ V to 300 μ V to the level of 1V to 3V, Used for accurate analog-to-digital conversion.

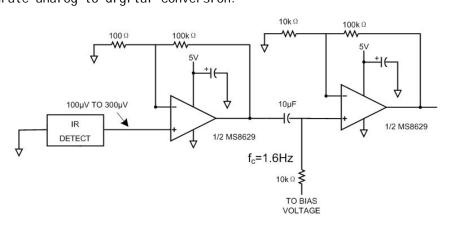


Figure 28.MS8629 is used as a preamplifier for an infrared temperature sensor **Precision flow sensor**

As shown in Figure 29, the unique characteristics of self-stabilizing zero amplifiers used for differential configurations benefit the application of precision shunt sensors. Shunt sensors can be employed in precision current sources within feedback control systems. Additionally, these sensors can be utilized in various other applications, including battery level meters, laser diode power consumption

measurement and control, torque feedback control in electric power steering, and precision

Hangzhou Ruimeng Technology Co., LTD http://www.relmon.com

Version number: 2.1 2015.10.10 Page 8 of 15

Electricity metering.

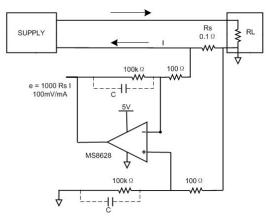
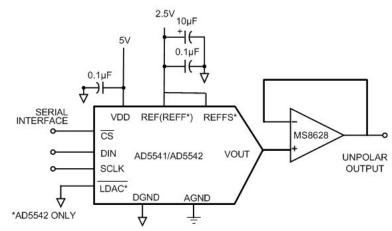
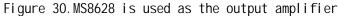


Figure 29. Low side current detection

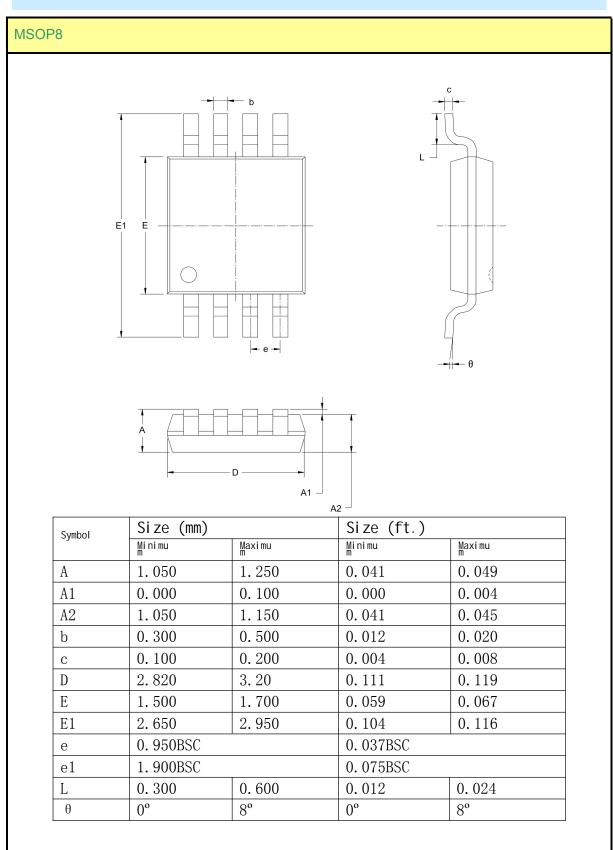
In such applications, it is best to use shunt sensors with extremely low resistance to minimize series voltage drop; this can reduce power waste as much as possible, allowing for high current measurements while achieving low power consumption. The resistance of the shunt sensor is typically 0.1 . When the measured current is 1A, the output signal from the shunt sensor can be several hundred millivolts or even a few volts, so the amplifier is not the primary source of error. However, when the current measurement is low, within the 1mA range, the 100 μ V output voltage of the shunt sensor requires extremely low offset voltage and drift to maintain absolute accuracy. Additionally, there needs to be low input bias current to ensure that the injected bias current does not significantly affect the measured current. High open-loop gain, CMRR, and PSRR help maintain overall circuit accuracy. As long as the rate of current change is not too fast, a self-stabilizing zero amplifier can provide excellent results.

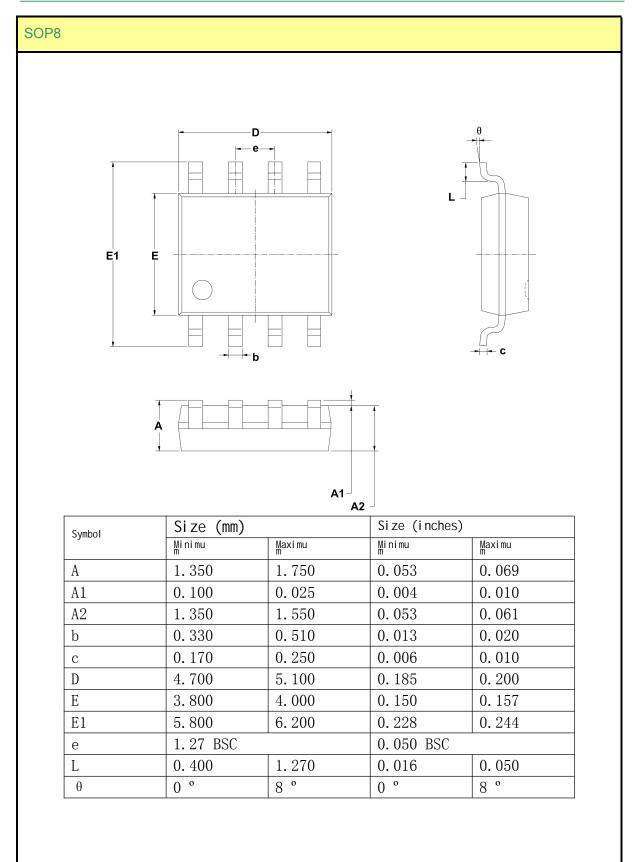

Output amplifier for high precision DAC


The MS8628/MS8629/MS8630 can all be used as output amplifiers for 16-bit single-pole configuration, high-precision DACs. In this case, the selected operational amplifier must have an extremely low offset voltage (the LSB of the DAC is 38 μ V when using a 2.5V reference voltage source) to eliminate the need for output offset adjustment. Additionally, the input bias current (typically in the tens of picas) must be very low, as it can introduce additional zero-crossing errors when multiplied by the DAC output impedance (approximately 6k).

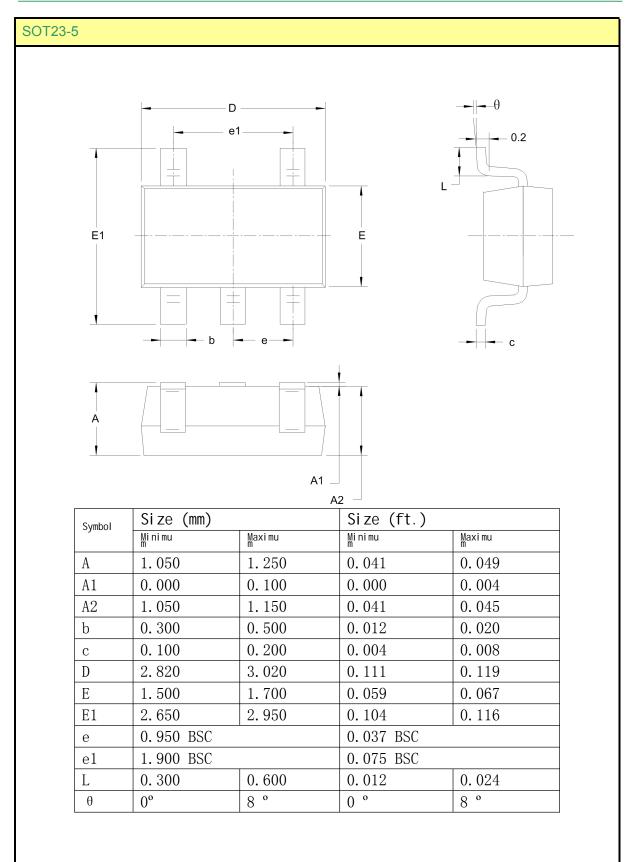
Track-to-track input and output can provide full-scale output with extremely low error. The output impedance of the DAC is constant and code-independent, but the high input impedance of MS8628/MS8629/MS8630 can minimize gain error. In this case, the wide bandwidth of these amplifiers is also very useful. The amplifier (set time of 1 μ s) adds another time constant to the system. This will extend the setup time of the output. For example, the setup time of AD5541 is 1 μ s. The combined setup time is approximately 1.4 μ s, which can be calculated using the following equation:

$$t_s(TOTAL) = \sqrt{\left(t_s DAC\right)^2 + \left(t_s MS8628\right)^2}$$





MS8628/8629/8630


Encapsulate the shape diagram

MS8628/8629/8630

MS8628/8629/8630

MRui Meng Technology

MS8628/8629/8630

MOS circuit operation precautions:

Static electricity can be generated in many places. The following precautions can effectively prevent the damage of MOS circuit caused by static discharge:

The operator should be grounded through an anti-static wristband.

The equipment housing must be grounded.

The tools used in the assembly process must be grounded.

Conductive packaging or anti-static material packaging or transportation must be used