

12V单通道全桥驱动器

Chip description

GC8837 is a 12V DC motor driver chip that provides an integrated motor drive solution for cameras, consumer products, toys, and other low-voltage or battery-powered motion control applications. The chip is typically used to drive a single DC motor or two motors to drive a stepper motor.

GC8837 It can work on the power supply voltage of 0~ 12V, and can provide up to 1.5A continuous output current or 2.5A peak current, and the power consumption is less than 1uA in sleep mode.

GC8837 Has a PWM (IN/IN) input interface, compatible with industry standard devices, and has overtemperature protection function.

The chip also integrates undervoltage protection, output short circuit protection, overcurrent protection and other functions.

Chip features

H Bridge motor driver-load power supply voltage 0~ 12Vlow conduction impedance (HS+LS) 350m

1.5A continuous drive output current PWM (IN1/IN2) input mode

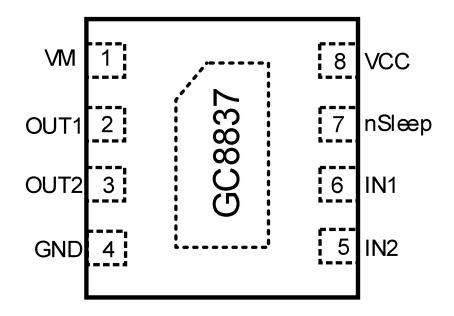
Compatible with 3.3V and 5V logic inputs

Built-in overtemperature protection
Built-in H-bridge power short circuit
protection, short ground protection

Low current sleep mode (nA class, when nSleep=0)

Chip application

camera
Digital single-lens reflex
(DSLR) lens Toy
robot technology
Shared bike locks
Water meter switch
armamentarium


Product	Package	Description Description
name	. denage	2000.171.0
GC8837	DFN8	2*2mm e=0.5

Packaging instructions

Per plate	Per box	Per case
3K	30K	120K

Pin distribution diagram

Pin description

Pin number DFN8	Name of tube	I/0	Description of tubes and feet
1	VM	Power	Power supply
2	OUT1	0	Output 1
3	OUT2	0	Output 2
4	GND	ground	The earth
5	IN2	I	Logical input 2
6	IN1	I	Logical input 1
7	nS1eep	I	Power saving mode input, low effective
8	VCC	Power	3.3V or 5V logic po- wer supply

Internal block diagram

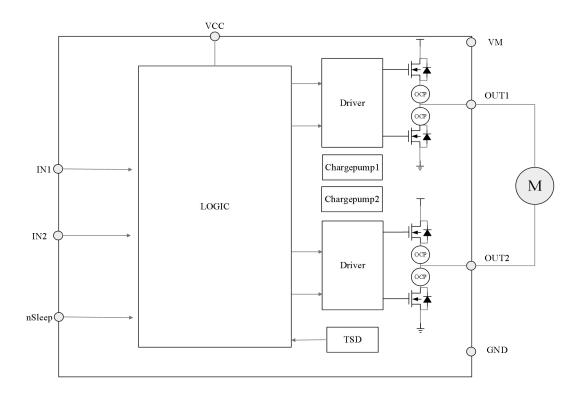


Figure 1 GC8837 Internal block diagram

Extreme parameters (T = 25 unless otherwise specified)

Parameter	Symbol	Parameter range	Uni t
Logic voltage range	VCC	-0.3 [~] 7	V
Load voltage	VM	0~16	V
Control the input voltage range	INx	-0.5 [~] 7	V
A constant current for a long time	Ion	±1.5	A
Drive peak current	Imax	±2.5	A
Junction temperature	Tjmax	-40~150	$^{\circ}$ C
Storage temperature	Tstg	-60 [~] 150	$^{\circ}$ C
Electrostatic prote- ction (human body mode)	ESD	±5000	V

Electrical parameters (T=25, VCC=3V, VM=12V in general without other special notes) Recommended working environment: (no other description, T=25)

Param eter	Symbol	Test condi- tion	Least value	Representative value	Crest val ue	+ u⊂
Logic power supply	VCC		2.0		7	v
Power supply	VM		0		12	v
Out put	$I_{ ext{out}}$		0		1.5	
External PWM fr- equency	$\mathrm{f}_{\scriptscriptstyle\mathrm{PWM}}$		0		400	k H 2
Working temp- erature	Ta		-40		85	T T

Electrical characteristics: (no other description, T=25 , VCC=3V, VM=12V)

Paramete r	Symbol	Test cond- ition	Least value	Representative value	Crest val ue	!
VCC operating curr- ent 1	$\mathrm{I}_{ ext{vcc1}}$	Not have PWM		368	450	u A
The operating current of VCC is 2	${ m I}_{ m vcc2}$	PWM 50 kHz		0. 68	1.0	ī
VCC standby cur- rent	I_{vccq}	nSIeep=0 power saving mode		40	80	n A
VM working current 1	$I_{\scriptscriptstyle VM1}$	Not have PWM		214	550	u A
VM working current 2	${ m I}_{{\scriptscriptstyle { m VM2}}}$	50 KHz PWM		0. 58	0. 90	:
VM working current 2	$\mathrm{I}_{\scriptscriptstyle{\mathrm{VMQ}}}$	nSIeep=0 power saving mode		1.3	20	n A
Output H, bridge para	meters					
Bridge conduction resistance of upper	$R_{\rm dsON1}$	I。=500mA; T=25°		350	450	
arm + lower arm	$R_{\rm dsON2}$	I _° =500mA; T=125°		530	700	
Off-state Leakage current	$I_{ m OFF}$	T	-10		10	u A
Logical input feet (II	N1, IN2, n	SI eep)			1	
The logic is rever-		IN 1, IN 2		1.28		v
sed from high to low at the voltage point	$ m V_{IL}$	n S 1 e e p		1.28		•
The logic is rever- sed from low to high at the voltage point	$ m V_{IH}$	IN 1, IN 2		1.58		T
at the vertage point		n S 1		1.58		v

		e e p				
		IN 1, IN 2		300		;
Reverse hyster- esis	$ m V_{HY}$	n S 1 e e p		300		;
Low input current at logic	${ m I}_{\scriptscriptstyle m IL}$; ; ; ;	-5		5	u A
High input current	т	Vin = 3.3V, INx pin		30		u A
logic	${ m I}_{{\scriptscriptstyle { m IH}}}$	Vin = 3.3V, nS- leep pin		30		u A
Pull-down resi- stor	$R_{\rm pd}$	IN1, IN2, nSleep		100		k O
Guard circuit		<u> </u>				
Over temperature protection	TSD	Temperatur e rise	155	169	180	v
Overtemperature protection hysteresis	ΔTSD			26		e e
Undervoltage prote- ction	$V_{\scriptscriptstyle UVLO}$	Sour ce VCC		1.9		v
Undervoltage prote- ction	ΔV_{uvlo}	Sour ce VCC		1.8		v
Overcurrent protec-	${ m I}_{ m OCP}$	Arm brid ge		3. 0		А
tion	1 00p	Lower arm bridge		3. 0		A
Overcurrent protection lag	$T_{ ext{DEG}}$	Overcurrent protection hysteresis time		1.5		u S
Overcurrent protection recovery time	Tretry	Overcurrent protection recovery time		1.5		a S

http://www.xinmaizj.com

Time series parameters and curves

TA = 25° C, VCC = 5 V, RL = 20 Ω

Parameter	Condition	Sco	рре	Uni t
	Condition	Minimum	Maxi mum	UIII t
T1	Start time		300	ns
T2	Turn-off time		220	ns
Т3	High input to high output de- lay		160	ns
T4	Low input to low output delay		160	ns
Т5	The output goes up	10	188	ns
Т6	Output goes down	10	188	ns

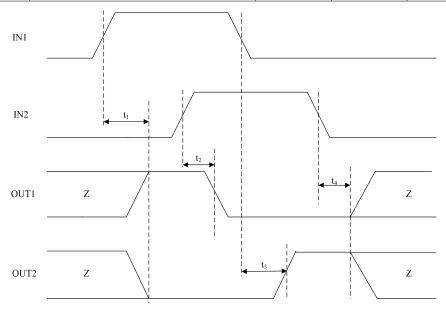


Figure 2 GC8837 Input and output time parameters 1

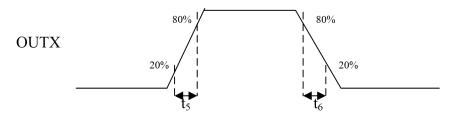


Figure 3 GC8837 Input and output time parameters 2

functional description

Bridge arm control

GC8837 Controlled by the PWM input interface, also known as IN/IN input mode, its control truth table is as follows:

nS1eep	IN1	IN2	OUT1	OUT2	Function
0	X	X	Z	Z	Dormancy
1	0	0	Z	Z	Free rotation
1	0	1	L	Н	Opposite direction
1	1	0	Н	L	Forward direction
1	1	1	ī	Ī	Stop a vehicle by appl-
1	1	1	L	L	ying the brake

Output drive

The output drive upper and lower tubes use NMOS power tubes, and the built-in charge pump circuit, the sum of the internal resistance of the upper and lower tubes is as low as 350m

Sleep patterns

When the nSleep is high, the chip works normally.

When the nSleep is at a low level, the chip enters a low-power sleep mode, which consumes power in the nA class and is suitable for low-power systems. The nSleep has a built-in 100k resistor that pulls down to gnd, and the default sleep mode is when the external input is suspended.

Input foot

The input foot has a 100K resistor pull-down and is set to low level input by default. quard circuit

Over temperature protection

When the chip junction temperature exceeds 169, the overtemperature protection circuit is activated, shutting off all output transistors. When the temperature drops by a hysteresis temperature of 26 and reaches 143, all output transistors resume operation; since overtemperature protection is only activated when the chip junction temperature exceeds the set value, it does not guarantee that the product will be protected from damage with this circuit alone, so the chip is equipped with short-circuit overcurrent protection. Short circuit protection OCP

The chip includes overcurrent protection circuits in each drive transistor of the H bridge. When any drive transistor detects a current exceeding IOCP and lasting longer than the hysteresis time TDEG (1.4 us), all drive transistors will turn off. After Tretry time (1.5 ms), the drive transistors will automatically attempt to return to normal operation. If abnormal currents persist, the shutdown-recovery-shutdown process will be repeated.

Overcurrent protection is generally designed to protect against abnormal conditions that could cause the chip to burn out. For example, when the upper arm bridge of OUT1 is conducting, if OUT1 abnormally touches ground, or when the lower arm bridge of OUT1 is conducting, OUT1 abnormally shorts to the power supply. This type of protection is also known as short-circuit protection to ground and short-circuit protection to power.

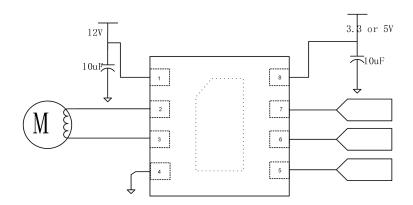
work pattern

GC8837 Enter sleep mode when nSleep is low. In sleep mode, all H-bridge is turned off and the output is in high resistance state. Most of the circuitry of the chip is turned off and enters power saving mode.

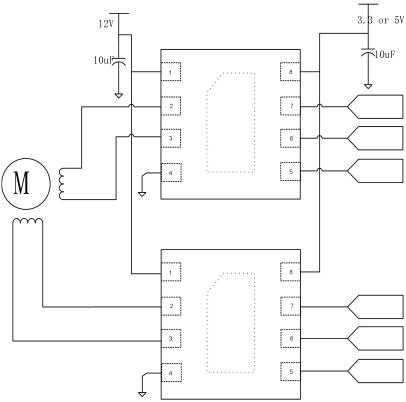
Pattern	Condi ti on	H bridge
Work	nS1eep=H	Work
Sleep patterns	nSleep=L	Turn-off

Failure detection	Over temperature, pressure	nder Turn-off	
	OCP	Shut down-restore-shut down mode	

http://www.xinmaizj.com


V1.3

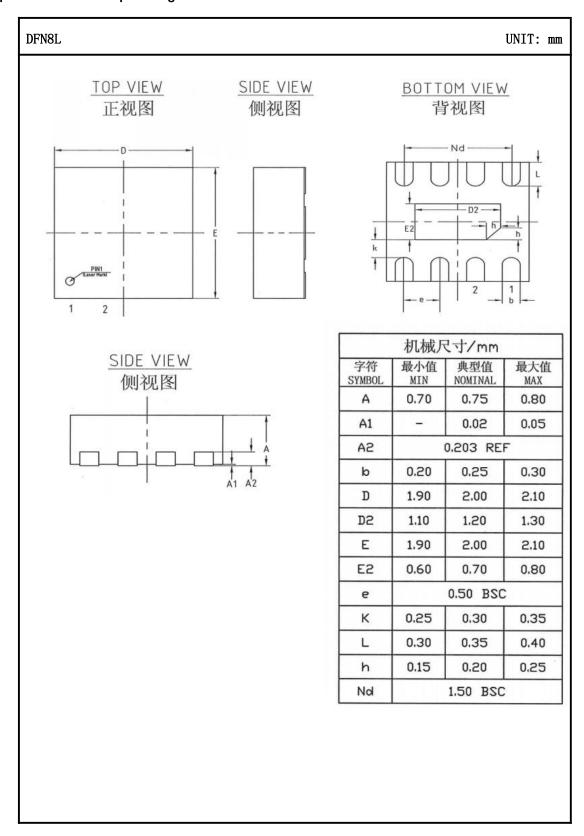
Page 6 of 8



Typical application circuit diagram

Figure 4 GC8837 Typical application schematic diagram

GC8837 Drive DC motor diagram



Two GC8837 drive stepper motor diagram

The bypass capacitor of VCC and VM should be connected as close to the chip VCC and VM pin as possible. When the load power supply exceeds 12V, it is recommended to increase the bypass capacitor of VM to more than 56uF.

Encapsulate the shape diagram

