

12V单通道全桥驱动器

Chip description

GC8838 is a 12V DC motor driver chip that provides an integrated motor drive solution for cameras, consumer products, toys, and other low-voltage or battery-powered motion control applications. The chip is typically used to drive a single DC motor or two motors to drive a stepper motor.

GC8838 It can work on the power supply voltage of 0~ 12V, and can provide up to 1.5A continuous output current or 2.5A peak current, and the power consumption is less than 1uA in sleep mode.

GC8838 Has a PWM (IN/IN) input interface, compatible with industry standard devices, and has overtemperature protection function.

The chip also integrates undervo-Itage protection, output short circuit protection, overcurrent protection and other functions.

Chip features

H Bridge motor driver-load power supply voltage 0~ 12Vlow conduction impedance (HS+LS) 350m

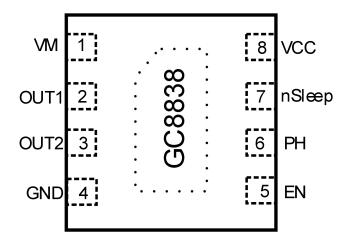
1.5A continuous drive output current PWM (PH/EN) input mode

Compatible with 3.3V and 5V logic inputs

Built-in overtemperature protection
Built-in H-bridge power short circuit
protection, short ground protection

Low current sleep mode (nA class, when nSleep=0)

Chip application


camera
Digital single-lens reflex
(DSLR) lens Toy
robot technology
Shared bike locks
Water meter switch
armamentarium

Product name	Package	Description Description
GC8838	DFN8	2*2mm e=0.5

Pin distribution diagram

Pin description

Pin number DFN8	Name of the tube	1/0	Description of the tubes and feet
1	VM	Power	Power supply
2	OUT1	0	Output 1
3	OUT2	0	Output 2
4	GND	ground	The earth
5	EN	I	Enable input (see logic table for details)
6	РН	I	Phase input (see logic table for details)
7	nS1eep	I	Power saving mode input, low effective
8	VCC	Power	3.3V or 5V logic power su- pply

Internal block diagram

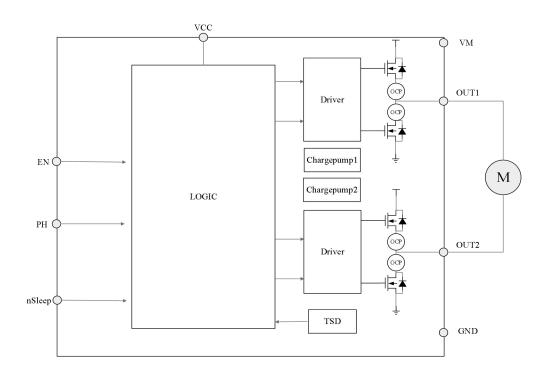


Figure 1 GC8838 Internal block diagram

Extreme parameters (T = 25 unless otherwise specified)

Parameter	Symbol	Parameter range	Uni t
Logic voltage range	VCC	-0. 3 [~] 7	V
Load voltage	VM	0~16	V
Control the input vo- Itage range	EN, PH	-0.5 [~] 7	V
A constant current for a long time	Ion	±1.5	A
Drive peak current	Imax	±2.5	A
Junction temperature	Tjmax	-40~150	°C
Storage temperature	Tstg	-60 [~] 150	°C
Electrostatic protection (human body mode)	ESD	±5000	V

Electrical parameters (T=25, VCC=3V, VM=12V in general without special note) Recommended working environment: (no other description, T=25)

Param eter	Symbol	Test condi- tion	Least val ue	Representative value	Crest value	Uni t
Logic power supply	VCC		2.0		7	V
Power supply for the Load	VM		0		12	V
Out put	${ m I}_{ m out}$		0		1.5	A
External PWM fr- equency	$\mathrm{f}_{\scriptscriptstyle\mathrm{PWM}}$		0		400	kH Z
Working temp- erature	Ta		-40		85	°C

Electrical characteristics: (no other description, T=25, VCC=3V, VM=12V)

Parameter	Symbol	Test condi - tion	Least value	Representative value	Crest val ue	Un i t
VCC operating current 1	$I_{ ext{vcc1}}$	Not have PWM		368	450	u A
The operating current of VCC is 2	$\mathrm{I}_{ ext{vcc2}}$	PWM 50 kHz		0.68	1.0	m A
VCC standby cur- rent	$I_{ ext{vccq}}$	nSIeep=0 power saving mode		40	80	n A
VM working current 1	${ m I}_{{\scriptscriptstyle { m VM1}}}$	Not have PWM		214	550	u A
VM working current 2	$I_{ ext{VM}2}$	50 KHz PWM		0.58	0.90	m A
VM working current 2	I_{VMQ}	nSIeep=0 power saving mode		1.3	20	n A
Output H, bridge param	neters					
Bridge conduction resistance of upper	$R_{\rm dsON1}$	I _° =500mA; T=25°		350	450	m Ω
arm + lower arm	$R_{\rm ds0N2}$	I_{\circ} =500mA; T= 125°		530	700	m Ω
Off-state leakage current	$I_{ m OFF}$	Y O U U T T T T T T T T T T T T T T T T T	-10		10	u A
Logical input feet (Ph	I, EN, nSI	eep)	I			
The logic is rever-		P H , E N		1. 28		v
sed from high to low at the voltage point	$V_{\scriptscriptstyle \mathrm{IL}}$	n S 1 e e p		1. 28		V
The logic is rever- sed from low to high at the voltage point	$V_{{\scriptscriptstyle \mathrm{IH}}}$	P H E N		1. 58		V
		n				V

		S				
		1 e e p		1. 58		
		P H E N		300		m V
Reverse hyster- esis	V _{HY}	n S 1 e e p		300		m V
Low input current at the logic level	${ m I}_{{\scriptscriptstyle { m IL}}}$	v i	-5		5	u A
High input current	${ m I}_{{\scriptscriptstyle { m IH}}}$	Vin = 3.3V, EN, PH pins		30		u A
l ogi c		Vin = 3.3V, nS- leep pin		30		u A
Pull-down resi- stor	R_{pd}	PH, EN, nSleep		100		k Ω
Guard circuit	I	I		I	I	ı
Over temperature protection	TSD	Temperatur e rise	155	169	180	ъ
Overtemperature protection hysteresis	Δ TSD			26		е
Undervol tage prote- ction	V _{UVLO}	Sour ce VCC		1. 9		V
Undervol tage prote- ction	ΔV_{UVLO}	Sour ce VCC		1.8		V
Overcurrent protec-	I_{ocp}	Arm brid ge		3. 0		A
tion	_ our	Lower arm bridge		3.0		A
Overcurrent protection lag	$T_{ ext{DEG}}$	Overcurrent protection hysteresis time		1.5		u S
Overcurrent protection recovery time	Tretry	Overcurrent pr- otection recov- ery time	V1 2	1.5		m S

Time series parameters and curves

TA = 25° C, VCC = 5 V, RL = 20° Ω

Parameter	Condition	Sco	Uni t		
Pai allietei	Condition	Mi ni mum	Maxi mum	OIII t	
t1	Delay time, PHASE high to OUT1 low		160	ns	
t2	The delay time is PHASE high to OUT2 high		200	ns	
t3	The delay time is PHASE low to OUT1 high		200	ns	
t4	The delay time is PHASE low to OUT2 low		160	ns	
t5	The delay time is high for ENBL and OUTx		200	ns	
t6	The delay time is low for ENBL and OUTx		160	ns	
t7	Increase the output rise time	30	188	ns	
t8	Reduce the time of output de- cline	30	188	ns	
	Wake up time, nSLEEP to output open		30	us	

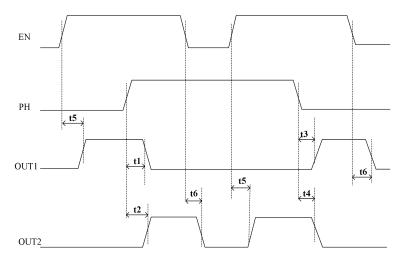


Figure 2 GC8838 Input and output time parameters 1

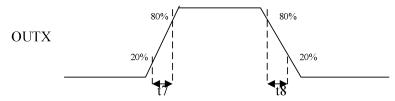


Figure 3 GC8838 Input and output time parameters 2

functional description

Bridge arm control

GC8838 Controlled by the PWM input interface, also known as IN/IN input mode, its control truth table is as follows:

nS1eep	РН	EN	OUT1	OUT2	Function
0	X	X	Z	Z	Dormancy
					Stop a vehicle
1	X	0	L	L	by applying
					the brake
1	1	1	ī	Н	Opposite dir-
1	1	1	L	11	ection
1	0 1	0 1	Н	ī	Forward dire-
1	U	1	11	L	ction

Output drive

The output drive upper and lower tubes use NMOS power tubes, and the built-in charge pump circuit, the sum of the internal resistance of the upper and lower tubes is as low as 400 m

Sleep patterns

When the nSleep is high, the chip works normally.

When the nSleep is low, the chip enters a low-power sleep mode, which consumes power at the nA level and is suitable for low-power systems. The nSleep has a built-in 100k resistor that pulls down to ground, and the default sleep mode is when the external input is suspended.

Input foot

The input foot has a 100K resistor pull-down and is set to low level input by default. **guard circuit**

Over temperature protection

When the chip junction temperature exceeds 169, the overtemperature protection circuit is activated, shutting off all output transistors. When the temperature drops by a hysteresis temperature of 26 and reaches 143, all output transistors resume operation; since overtemperature protection only activates when the chip junction temperature exceeds the set value, it does not guarantee that the product will be protected from damage with this circuit alone, so the chip is equipped with short-circuit overcurrent protection.

Short circuit protection OCP

The chip includes overcurrent protection circuits in each drive transistor of the H bridge. When any drive transistor detects a current exceeding IOCP and lasting longer than the hysteresis time TDEG (1.4 us), all drive transistors will turn off. After Tretry time (1.5 ms), the drive transistors will automatically attempt to return to normal operation. If abnormal currents persist, the shutdown-recovery-shutdown process will be repeated.

Overcurrent protection is generally designed to protect against abnormal conditions that could cause the chip to burn out. For example, when the upper arm bridge of OUT1 is conducting, if OUT1 abnormally touches ground, or when the lower arm bridge of OUT1 is conducting, OUT1 abnormally shorts to the power supply. This type of protection is also known as short-to-ground and short-to-power protection.

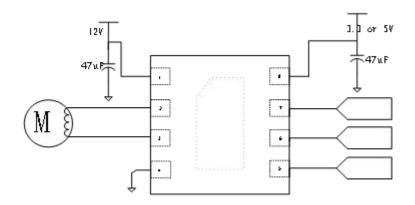
work pattern

GC8838 Enter sleep mode when the nSleep is low, in sleep mode H, all bridges are turned off, output high resistance state, most of the chip circuit is turned off, and enter power saving mode.

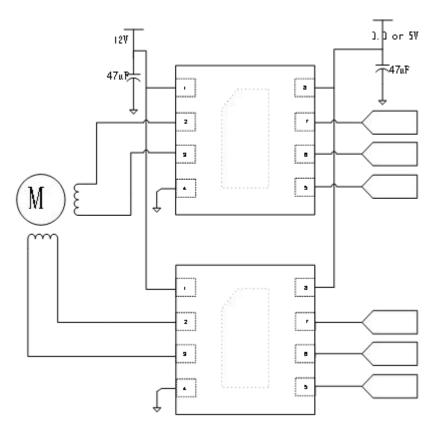
Pattern	Condition	H bridge
Work		Work

	nSleep=H	
Sleep patterns	nSleep=L	Turn-off
Failuma dataatian	Over temperature, under pressure	Turn-off
Failure detection	OCP	Shut down-restore-shut down mode

http://www.xinmaizj.com


V1.3

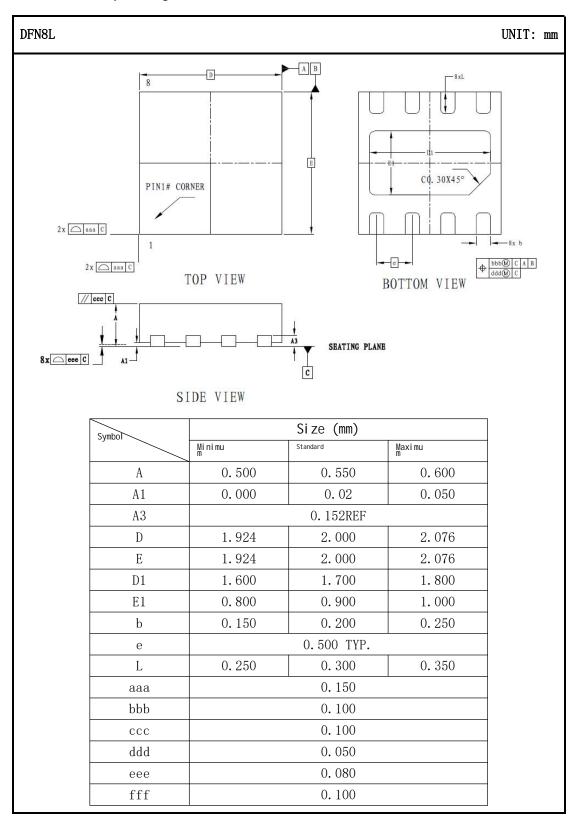
Page 6 of 8



Typical application circuit diagram

Figure 4 GC8838 Typical application schematic

GC8838 Drive DC motor diagram



Two GC8838 drive stepper motor diagram

VCC, the bypass capacitor connection of VM should be as close as possible to the chip VCC, VM foot. When the load power supply exceeds 12V, it is recommended to increase the VM bypass capacitor greater than 56uF.

Encapsulate the shape diagram

