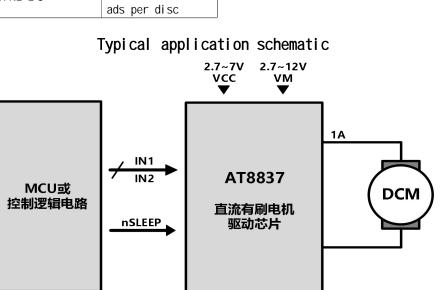


description

AT8837 provides an integrated motor driver solution for low-voltage applications such as cameras, smart locks, and toys, or battery-powered products. AT8837 can drive a brushed DC motor or inductive loads like solenoids, offering up to 1A of drive current. The device operates within a power supply voltage range of 2.7-12V and includes comprehensive protection features such as overcurrent, short circuit, overtemperature, and undervoltage lockout.

AT8837 It has a PWM (IN1/IN2) input interface.


AT8837 Provide a DFN-8 (2mm*2mm) package with exposed pads, and it is lead-free product, which meets the environmental protection requirements.

Appl

- Camera **y**
- consumer
- products
- ∎ toys
- Roboti
- C SM-
- art
- ∎ door

Model selection

Order number	Package	Pack	
AT8837	DFN2*2-8	Strips, 3000 be-	
110057		ads per disc	

Low voltage H bridge motor drive chip characteristic

Independent H-bridge drive circuit Drive a DC brushed motor or other inductive load Low RDS (ON) resistance, 1.05 (HS + LS) Continuous drive output of 1A Wide voltage supply range, 2.7-12V nSLEEP Low power sleep mode controlled by the pin overcurrent protection Overtemperature shutdown circuit short-circuit protection Under-voltage lockout protection **Packaging form**

DFN-8 with PAD

Version update log

Date	Edition	Content
2018.04	V1.0	Initial version
2018.09	V1.1	Power supply voltage lower limit correction
2018.12	V1.2	Correction of voltage rating of power filter capacitor
2020.03	V1.3	 Modify the upper limit of power supply voltage; Add packaging information; Increase the thermal resistance paramet- er; Add a table of temperature characterist- ics for test waveforms and conduction impe- dance
2020.09	V1.4	Modify the POD size of the package

Hangzhou Zhongke Microelectronics Co., LTD Low voltage H bridge motor drive chip

The working limit of the circuit is at TA = 25° C

Parameter	Symbol	Condi ti on	Scope	Uni t
Motor power supply voltage	VM		-0.3 – 15	V
Continuous output current	Iout		±1	А
Instantaneous peak current	I _{PEAK}	Internal restrictions	>1.5	А
Logic power supply voltage	VCC		-0.3 to 7	V
Logic input voltage	V _{IN}		-0.5 to VCC	V
Operating ambient temperature	T _A		-40 to 85	°C
Maximum junction temperature	T _{J(max)}		150	°C
Storage temperature	Tstg		-55 to 150	°C

Thermal resistance characteristic at Ta = 25° C

Heat metering	DFN 8PINS	Uni t
JA-Thermal resistance coefficient (*) from silicon core to environment	50	°C/W

(*) The thermal resistance coefficient of silicon core to the environment under natural convection is obtained by actual test on a JEDEC standard high K circuit board specified in JESD51-7, and environmental conditions are as described in JESD 51-2a.

Recommended working conditions at $TA = 25^{\circ} C$

Parameter	Symbol	Minimum	Typi cal case	Maxi mum	Uni t
Motor power supply voltage	VM	2.7	-	12	V
Logic power supply voltage	VCC	2.7	-	5.25	V
Continuous output current	Iout	0	-	0.8	А
Enter the PWM frequency	$f_{\rm PWM}$	0	-	250	kHz

(1) All voltage values are based on the ground port as the potential zero point.

(2) When the chip works with large current, do a good job of chip heat dissipation.

(3) The performance of the chip is not guaranteed when it operates under conditions other than those recommended.

(4) When the chip works beyond the circuit limit, it may cause permanent damage to the device.

(5) If the chip is placed for a long time beyond the operating limit of the circuit, it may affect the reliability of the device.

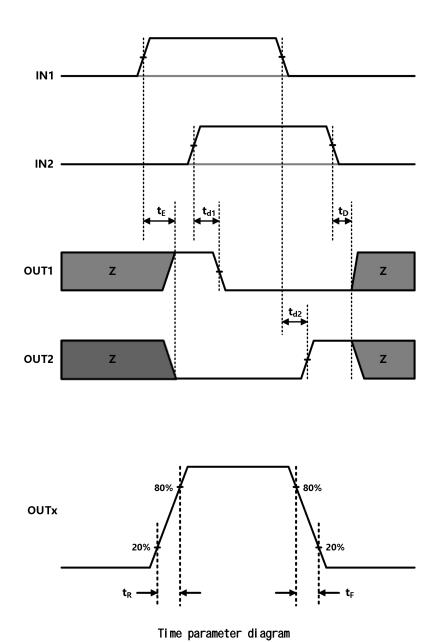
ł	lang	jzhou	Zhongl	ke	Mi croel	lectro	ni cs	Co. ,	, L	.TD

Low voltage H bridge motor drive chip

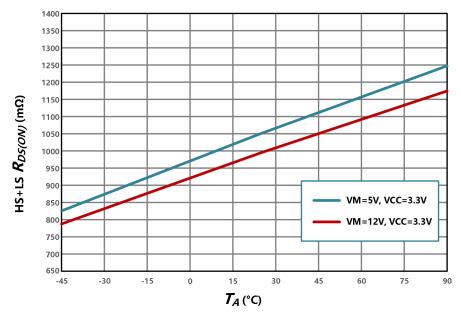
AT8837

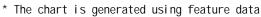
	Parame	tTA = 25° C, VM= 5 V, Test co-				llni
	ter	ndi ti on	Minimum	Typi cal case	Maximum	Uni t
Power su	ppl y					
I _{VM}	VM Static operating current			0.3	0.8	m A
I _{VMQ}	VM sleep current	nSLEEP = 0		50	100	n A
I _{VCC}	VCC static operating current			0.8	1.5	m A
Ivccq	VCC sleep working cur- rent	nSLEEP = 0		0.3	1	uA
Logical i	nput					
V _{IL}	Low voltage for logical input				0.8	V
V _{IH}	High voltage for logical input		2.0			V
V _{HYS}	Logical input hystere- sis			0.24		V
I _{IL}	Logic input current _ low level	$V_{IN} = 0$			1	u A
Logic input current _	IN1, IN2		30		u A	
I _{IH}	high level	nSLEEP		30		u A
R _{PD}	Enter internal pull-down	nSLEEP		100		KΩ
	resistance	IN1, IN2		100		KΩ
H bridge	FETs					
R _{DS(ON)}	High side FET on- resistance	$I_0 = 200 mA$		700		0
KDS(ON)	Low side FET on- resistance	$I_0 = 200 \text{mA}$		350		mΩ
I _{off}	Output turn-off leakage current		-1		1	u A
Guard cir	rcui t					
I _{OCP}	Overcurrent protection threshold		1.2	1.35		A
t _{DEG}	OCP anti-shake delay			3		us
T _{retry}	OCP reboot time			1.3		ms
T _{TSD}	Over temperature thre- shold	Chip internal junction temperature	150	160	180	°C
V _{UVLO}	VCC under-voltage lock value	VCC rise		2.6		V
V _{UVLO HYS}	VCC under-voltage hys- teresis			100		m V
Resting s	state	1	1	1	<u>I</u>	
twake	Sleep wake time	Pull up nSLEEP to bridge H		35		us

www.icofchina.com


Page 4 of 16

AT8837-S402-V1.4


Low voltage H bridge motor drive chip


837

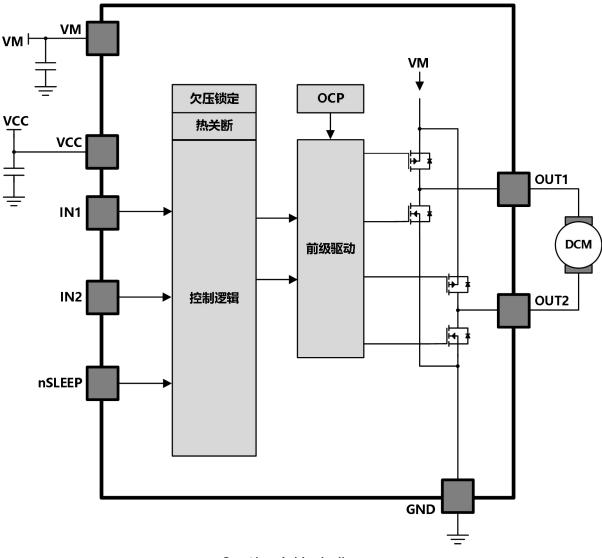
$t_{\rm E}$	Output enable time	Output enable time	325	500	ns
t _D	Output turn-off time	Output disable time	200	500	ns
t _{d1}	Input changes to output with low delay	Delay time, IN2 high to OUT1 low	300	500	ns
t _{d2}	The input change takes a long time to go to the output	Delay time, IN1 low to OUT2 high	400	500	ns
t _R	Rise time	22Ω to GND, 20% to 80%	20	180	ns
t _F	Drop-out time	22Ω to GND, 80% to 20%	5	180	ns
t _{DEAD}	Dead zone time		205		ns

Typical work characteristic curve

20% duty cycle, positive

20% duty cycle, reverse

50% duty cycle, positive


50% duty cycle, reverse

Low voltage H bridge motor drive chip

Module function description

AT8837 provides an integrated drive solution for single brushed DC motors or inductive loads such as solenoids. The chip internally integrates a H-bridge power output module, delivering a peak current output of 1A. AT8837 operates within a normal voltage range of 2.7 to 12V. By pulling down the nSLEEP pin, AT8837 can achieve low-power sleep mode.

The chip integrates the power tube and its control circuit, reduces the number of peripheral devices, and has complete protection functions such as overcurrent, short circuit, overheating and undervoltage lock.

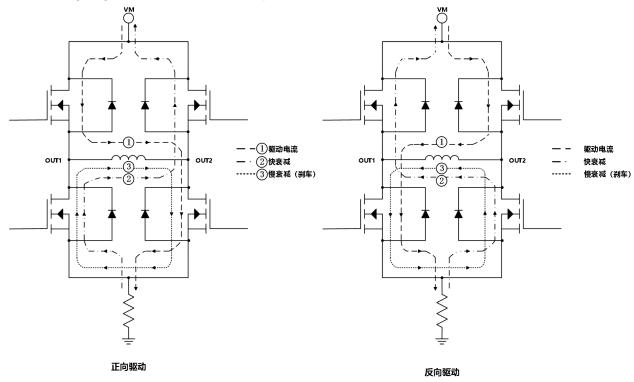
functional block diagram

H bridge control logic

The input pins IN1 and IN2 control the enable and current direction of the H bridge. The following table shows the logical relationship between them.

nSLEEP	IN1	IN2	OUT1	OUT2	Function (DC mo- tor)
0	Х	Х	Z	Z	Dormancy
1	0	0	Z	Z	GI i ssade
1	0	1	L	Н	Reversal
1	1	0	н	L	Corotation
1	1	1	L	L	Stop a vehicle by applying the brake

H Bridge control logic table


The logic input can also use PWM control to achieve speed regulation. When a PWM wave controls a coil, the drive current is interrupted, and due to the inductive characteristics of the motor, the motor coil must continue to conduct. To operate the motor coil to continue conducting, the H-bridge can operate in two different states: fast decay or slow decay. In fast decay mode, the H-bridge turns off, and the freewheeling current flows through the body diode; in slow decay mode, the ends of the motor coil are short-circuited.

When PWM control is used in fast attenuation mode, the PWM signal controls one INx pin while the other pin remains low; when used in slow attenuation mode, one of the pins remains high.

IN1	IN2	Function
PWM	0	Forward PWM, fast decay
1	PWM	Forward PWM, slow decay
0	PWM	Reverse PWM, fast decay
PWM	1	Reverse PWM, slow decay

PWM controls motor speed

The following figure shows the current path in different drive and attenuation modes.

Drive and decay mode

Overcurrent protection (OCP)

On each FET, there is a current detection circuit. When the current exceeds the set threshold and persists for more than the OCP anti-flicker time tDEG, all FETs in the H-bridge turn off. After a period of overcurrent reset tRETRY, the H-bridge will open again. If the overcurrent is cleared, the H-bridge resumes normal operation; if the overcurrent persists, the aforementioned action repeats.

Overcurrent protection is triggered if the upper and lower pipes of H bridge are short-circuited to ground, to VM, or to the output.

Overtemperature protection (TSD)

If the junction temperature exceeds the safety threshold, all FETs in the H bridge will be turned off. After the junction temperature drops to a certain value, the chip will automatically return to normal operation.

Under-voltage lockout protection (UVLO)

If the voltage on the VCC pin is below the undervoltage lockout threshold, all FETs in the internal H-bridge are turned off. When the VCC rises above the undervoltage lockout threshold, the chip automatically returns to normal operation.

Device protection threshold

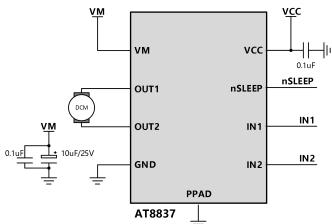
Abnormal conditions	Trigger conditions	H bridge	Recover		
VCC Under-voltage Lockout Protection (UVLO)	VCC < 2.55V	Turn-off	VCC > 2.65V		
Overcurrent, short circuit protection (OCP)	I _{OUT} > 1.2A(MIN)	Turn-off	After 1.2ms		
Thermal shutdown (TSD)	T _J > 160 °C(MIN)	Turn-off	$T_J < 140 \ ^{\circ}C$		
Abnormal condition table					

Device function mode

nSLEEP When the nSLEEP pin is input at a low level, the device enters low-power sleep mode. After entering low-power sleep mode, the H-bridge of the device is turned off and all logic inputs are ignored; when the nSLEEP pin is input at a high level, the chip returns to normal operation.

It is recommended to pull all input pin levels to low level when entering low power sleep mode in order to further reduce chip power consumption.

Pattern	Condi ti on	H bridge
Regular work	nSLEEP = 1	Regular work
SLeep mode	nSLEEP = 0	Turn-off
An exception occurred	Meet any exceptional conditions	Turn-off
	Frankler will take	


Function mode table

www.icofchina.com

Low voltage H bridge motor drive chip

Information on circuit applications

Brushed DC motor drive

Typical design requirements

Design value	Refer to	Example values
Motor power supply voltage	VM	12V
Logic power supply voltage (only AT 8837)	VCC	5V
Target current RMS	I _{OUT}	0.5A

Typical application

Detailed design process power dissipation

The power consumption of AT8837 is mainly on the impedance RDS (ON) of the FET in the H bridge.

The average power consumption can be roughly estimated as:

$$P_{TOT} = R_{DS(ON)} \times (I_{OUT(RMS)})^2$$

In the formula

PTOT is the total power dissipation;

RDS (ON) is the total conduction impedance (HS+LS);

IOUT (RMS) is the effective value of the output current.

The maximum power consumption that the device can withstand depends on the ambient temperature and heat dissipation.

Note: RDS (ON) increases with temperature, so power consumption increases as the device temperature increases.

AT8837 Built-in thermal shutdown protection, when the junction temperature reaches about 160 $^{\circ}$ C, the H bridge will be shut down until the temperature drops to a safe range.

The chip is easy to touch and turn off because of high power consumption, insufficient heat dissipation or high ambient temperature.

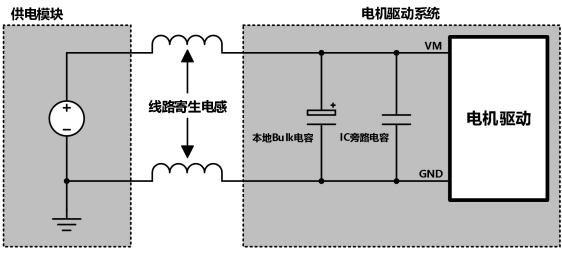
Power and input pins

The VM does not have an undervoltage lockout function (UVLO). As long as the VCC is greater than 2.7V, the internal circuit logic will remain in operation, which means that the VM supply voltage can be as low as OV, but the load cannot be fully driven in the low VM state.

Regardless of whether the VCC and VM ports are connected to the power supply, the input pins should be configured under recommended operating conditions. There is no leakage current path between the input pins and the power supply. Each input pin has a pull-down resistor (about 100k

www.icofchina.com

Power supply recommendations


Both the VM and the VCC should be connected to a 0.1μ ceramic capacitor to ground, and the capacitor should be placed as close to the device as possible.

The right Bulk capacitor is the key to motor drive system design. Generally, the larger the Bulk capacitor, the better the effect, but it also brings the cost and PCB size increase.

The capacitance value required depends on the following factors:

Maximum current required by the motor system The capacitance of the power supply and its ability to supply current The parasitic inductance between the power supply and the motor system Acceptable voltage ripple Type of motor used (brushed, brushless, stepper) Motor braking method

The inductance between the power supply and the motor system limits the rate of change of output current. If the capacitance value of the local Bulk capacitor is set too low, the system voltage will fluctuate when encountering high currents or sudden changes in motor load; if sufficient Bulk capacitors are used, the voltage can remain stable and provide a large current to the motor.

Example configuration of a motor drive system powered by an external power supply

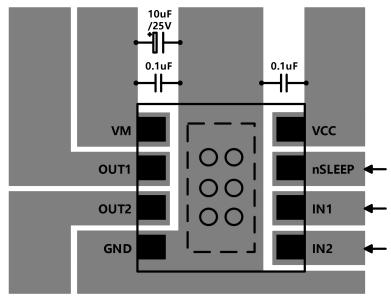
The voltage rating of bulk capacitor should be slightly higher than the working voltage to prevent the motor from overvoltage to the power supply.

LTD Low voltage H bridge motor drive chip

Map layout notes

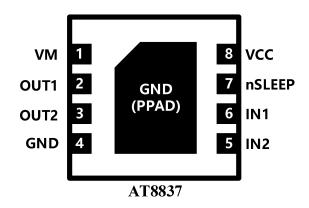
The PCB should be covered with a large area of copper, and the power and ground lines should have enough width. In order to optimize the electrical characteristics and thermal performance of the circuit, the chip should be directly attached to the PCB, copper covered.

For VM and VCC ports, use a ceramic capacitor with low ESR to connect to ground. The recommended capacitance is 0.1uF. These capacitors should be placed as close as possible to the VM and VCC pins and connected through a wide enough ground wire and GND pin.


In order to avoid the capacitance coupling problem caused by high speed dV/dt transformation, the output end of the drive circuit and the input end of the logic control are isolated by ground wire.

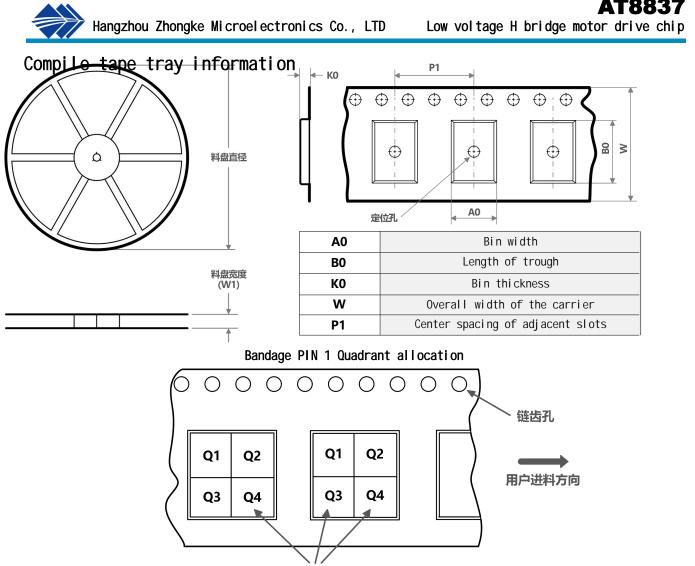
Ground wire setting

All ground lines in the chip should be connected together, and the connection should be as short as possible. One optimization scheme is to lay the ground lines under the device, in a star pattern.


A piece of copper with the right size is placed on the back of the PCB to improve circuit performance.

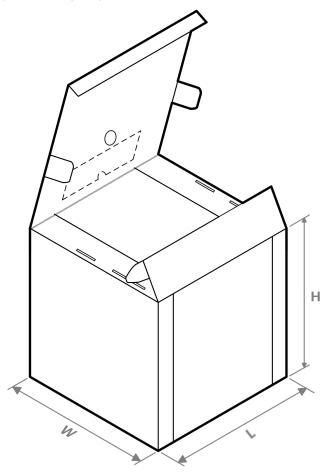
Map example

Simplified map example


Pin definition

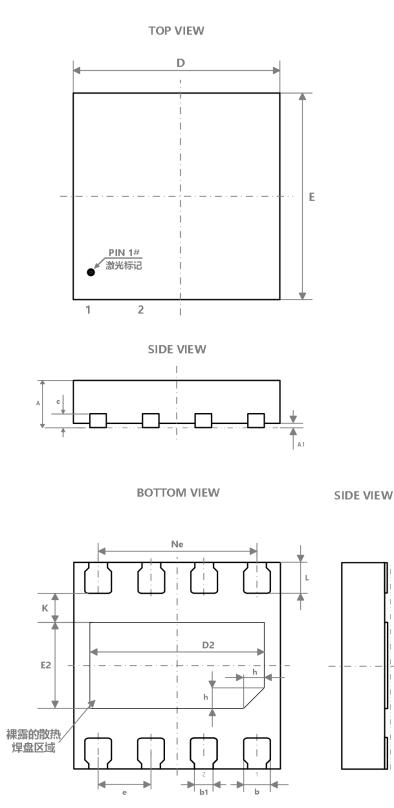
Pin list

131				
Pin name	Pin number	Pin type	Pin descri- ption	External components or connections
GND	4	PWR	Chip it	All GND pins and bare pads of the chip
PPAD	-	PWR	Chip It	should be connected to the power ground.
VM	1	PWR	Motor power supply	Connect an external 0.1uF ceramic capac- itor to ground for bypass.
vcc	8	PWR	Logic power supply	Connect an external O.1uF ceramic capac- itor to ground for bypass.
NC	-	-	-	The pins are suspended.
IN1	6	I	Control logic input	
IN2	5	I	Control logic input	
nSLEEP	7	I	Sleep mode input	Logic high level, the chip works normal- ly; logic low level, the chip enters low power sleep mode. Built-in pull-down re- sistor.
OUT1	2	0	H bridge out- put 1	Connect to the motor soil
OUT2	3	0	H bridge out- put 2	Connect to the motor coil.



微	象	ß	Ę

D e v i c e	Packag e Typ e	Package Characteristic	Number of pins	SP Q	Chargi ng tray Di ameter (mm)	Chargi ng tray Wi dth (mm)	(m m)	(m m)	، (m m)	' (m m)	(m m)	Pin 1 Quadrant
AT 88 37	DFN	-	8	3000	178	8	2	2	0.75	4	8	Q2



Band material tray packaging size

De vi ce	Packagi ng type	Packaging identi- fication	Number of pins	SP Q	Length (mm)	Width (mm)	Altitude (mm)
AT 883 7	DFN	-	8	3000	210	210	210

Package information

Symbol	Millimetre (mm)							
- O'Jiiibo'i	MIN	MIN NOM MAX						
А	0.50	0.55	0.60					
A1	0	0.02	0.05					
b	0.20	0.25	0.30					
b1	0.11	0.16	0.21					
С	0.10	0.15	0.20					
D	1.90	2.00	2.10					
D2	1.60	1.70	1.80					
е	0.50BSC							
Ne		1.50BS0	2					
E	1.90	2.00	2.10					
E2	0.80	0.90	1.00					
L	0.25	0.30	0.35					
h	0.15	0.20	0.25					
К	0.20	0.25	0.30					