SIT3485 Corel 3.3V power supply, 256 nodes, 12Mbps half-duplex RS485/ RS422 transceiver

characteristic:

- 3.3V power supply, half-duplex;
- > 1/8 unit load, allowing up to 256 devices to be connected to the bus;
- Driver short circuit output protection;
- > Over temperature protection function;
- Low power consumption shutdown function;
- Receiver open circuit failure protection;
- Strong anti-noise ability;

Integrated transient voltage resistance function;

Product shape:

Provide green, lead-free packaging

> The data transmission rate in the electrical noise environment can reach 12Mbps;

descripti on

SIT3485 is a 3.3V powered, half-duplex, low-power RS-485 transceiver that fully meets the requirements of TIA/EIA-485 standards.

SIT3485 includes a driver and a receiver, both of which can be independently enabled or disabled. When both are disabled, the driver and receiver output high impedance states. SIT3485 has 1/8 load capacity, allowing 256 SIT3485 transceivers to be connected in parallel on the same communication bus. It supports error-free data transmission up to 12 Mbps.

SIT3485 The working voltage range is 3.0~3.6V, and it has fail-safe (fail-safe), over temperature protection, current limiting protection, overvoltage protection and other functions.

Pin distribution dia-

aram

absolute rating

Parameter	Symbol	Big or small	Uni t
Supply voltage	VCC	+7	V
Control the port voltage	/RE, DE, DI	-0.3~+7	V
Total input voltage on the bus	Α、Β	-7~13	V
Receiver output vo- Itage	RO	-0.3~+7	V
Operating temperat- ure range		-40~85	°C
Storage working te- mperature range		-60~150	°C
Welding temperature range		300	°C
Continuous power	SOP8	400	mW
consumpti on	DIP8	700	mW

The maximum limit parameter value is the value beyond which the device may suffer irrecoverable damage. Under these conditions, it is not conducive to the normal operation of the device. Continuous operation of the device at the maximum allowable rating may affect the reliability of the device. All voltage reference points are ground.

Pin definition

Pin number	Pin name	Pin function
1	RO	Receiver output end. When /RE is low, if A-B is greater than or equal to 200 mV, RO output is high; if A-B is less than or equal to- 200mV, RO output is low.
2	/RE	Receiver output enable control. When /RE is connected to low voltage, the receiver output enables and RO output is valid; when /RE is connected to high voltage, the receiver output is disa- bled and RO is in high resistance state; When the RE is connected to a high level and the DE is connected to a low level, the device enters the low- power shutdown mode.
3	DE	Driver output enable control. When DE is high and DE is low, the driver output is valid; when DE is high and DE is low, the device enters low-power shutdown mode.
4	DI	DI driver input. When DE is high, the low level on DI makes the in-phase terminal A of the driver output low and the out-of-phase terminal B of the driver output

		high; the high level on DI will make the in-phase terminal output high and the out-of-phase terminal out- put low.
5	GND	Landi ng
6	А	Receiver in-phase input and driver in-phase output
7	В	Receiver inverting input and driver inverting output
8	VCC	Power connection

REC V1.1 2017.12

2 / 13

SIT3485

DC electrical	characteri sti cs	of
the driver		

Parameter	Symbol	Test condition	Minimum	Typi cal case	Maxi mum	Uni t
Driver different- ial output (non-loaded)	V _{OD1}			3.3		V
Drive differential	Vopa	Graph 2, RL=54	1.5		VCC	V
output	• 0D2	Graph 2, RL=100	2		VCC	v
Change in the am- plitude of the output voltage (NOTE1)	ΔV_{OD}	Graph 2, RL=54			0.2	V
Output common mode voltage	V _{OC}	Graph 2, RL=54			3	V
Change in the am- plitude of the common-mode output voltage (NOTE1)	ΔV_{OC}	Graph 2, RL=54			0.2	V
High-level input	V_{IH}	DE, DI, /RE	2.0			V
Low level input	V _{IL}	DE, DI, /RE			0.8	V
Logic input curr- ent	I _{IN1}	DE, DI, /RE	-2		2	uA
The current at the output short cir- cuit is high	I _{OSD1}	Short circuit to OV~12V			250	mA
The current at the time of output short circuit is low	I _{OSD2}	Short circuit to-7V~OV	-250			mA
Overtemperature shutdown threshold temperature				140		°C
Overtemperature shutdown hystere- sis temperature				20		°C
(If no other expl	anation is	s given, VCC=3.3V	′±10%, Tei	mp=TMIN~TMA	X, typica	

 $(\Pi$ value in VCC=+3.3V, Temp = 25) NOTE1: VOD and VOC are the changes in VOD and VOC amplitude caused by the state change of input signal DI.

				DC electric the receive	DC electrical characteristics the receiver	
Parameter	Symbol	Test condition	Minimum	Typi cal	Maxi mum	Uni t

				case		
Input current (A, B)	Inva	DE = 0 V, VCC=0 or 3.3V VIN = 12 V			125	uA
	-1112	DE = 0 V, VCC=0 or 3.3V VIN = -7 V	-100			uA

REC V1.1 2017.12

SIT3485

Corel 3.3V power supply, 256 nodes, 12Mbps half-duplex RS485/ RS422 transceiver

Positive input threshold voltage	V _{IT+}	$-7V \leq V_{CM} \leq 12V$			+200	mV
Reverse input th- reshold voltage	V _{IT-}	$-7V \leq V_{CM} \leq 12V$	-200			mV
Input hysteresis voltage	$\mathbf{V}_{\mathrm{hys}}$	$-7V \leq V_{CM} \leq 12V$	10	30		mV
High level output voltage	V _{OH}	$I_{OUT} = -2.5 \text{mA},$ $V_{ID} = +200 \text{ mV}$	VCC-1.5			V
Low level output voltage	V _{OL}	$I_{OUT} = +2.5 \text{mA},$ $V_{ID} = -200 \text{ mV}$			0.4	V
Three state input leakage current	I _{OZR}	$0.4 \text{ V} < \text{V}_{0} < 2.4 \text{ V}$			±1	uA
Input resistance at the receiver	R _{IN}	$-7V \! \leq \! V_{\rm CM} \! \leq \! 12V$	96			kΩ
Receiver short circuit current	I _{OSR}	0 V≤V₀≤VCC	± 8		±60	mA

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

supply current

Parameter	Symbol	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
Supply current	I _{CC1}	/RE=0V, DE = 0 V		520	800	uA
	I _{CC2}	/RE=VCC, DE=VCC		540	700	uA
Shut off the cur- rent	I _{SHDN}	/RE=VCC, DE=0V		0.5	10	uA

Driver switch characteris-tics

Parameter	Symbol	Test condition	Minimum	Typi cal case	Maxi mum	Uni t
Driver different-	taa	RDIFE - 60		10	35	ne
ial output delay	CDD	C = 1 - C = 2 - 100 pc		10	55	115
Drive differential		(see Figure 3				
output transition	t _{TD}	and Figure 4)		12	25	ns
time		and rigule 4)				
Driver propagation		$R_{\text{DIFF}} = 27 \ \Omega,$		_		
del ay	t _{PLH}	(See Figure 3		8	35	ns
From low to high		and Figure 4)				

Driver propagation					
del ay	t _{PHL}		8	35	ns
From high to low					

REC V1.1 2017.12

SIT3485

Corel 3. 3V power supply, 256 nodes, 12Mbps half-duplex RS485/ RS422 transceiver

t _{PLH} -t _{PHL}	t _{PDS}		1	8	ns
Enable to output high	t _{PZH}	$R_L = 110 \Omega$, (See Figures 5)	20	90	ns
Enable to output low	t _{PZL}	and 6)	20	90	ns
Input is low to the forbidden en- ergy	t _{PLZ}	$R_L = 110 \Omega$, (See Figures 5	20	80	ns
Input high enough to disable energy	t _{PHZ}	and 6)	20	80	ns
Under shutdown conditions, Enable to output high	t _{DSH}	$R_L = 110 \Omega,$ (See Figures 5 and 6)	500	900	ns
Under shutdown conditions, Enable to output low	t _{DSL}	$R_{L} = 110 \Omega,$ (See Figures 5 and 6)	500	900	ns

Receiver switch character-istics

Parameter	Symbol	Test condition	Minimum	Typi cal case	Maxi mum	Uni t
Acceptor						
The input to out-						
put propagation	t _{RPLH}			80	150	ns
delay goes from						
low to high						
Acceptor		$C_L = 13 \text{ pr}$			150	ns
The input to out-		See Figure 7		80		
put propagation	t _{RPHL}	and Figure 8				
delay goes from						
high to low						
t _{RPLH} – t _{RPHL}	t _{RPDS}	-		7	10	ns
Enable to output low time	t _{RPZL}	C _L =15pF				
		See Figure 7		20	50	ns
		and Figure 8				
Enchla tha high	t _{RPZH}	C _L =15pF				
time to output		See Figure 7		20	50	ns
		and Figure 8				
From low output to	t _{PRLZ}	C _L =15pF				
		See Figure 7		20	45	ns
		and Figure 8				
From high output						

		C _L =15pF				
to forbidden time	t _{PRHZ}	See Figure 7		20	45	ns
		and Figure 8				
In the off state		C _L =15pF				
Enable the high	t _{RPSH}	See Figure 7		200	1400	ns
time to output		and Figure 8				
In the off state		C _L =15pF				
Enable low time to	t _{RPSL}	See Figure 7		200	1400	ns
output		and Figure 8				
Enter the shutdown state time	t _{SHDN}	NOTE2	80		300	ns

Note2: When /RE=1 and DE=0, the duration is less than 80ns, the device must not enter the shutdown state; when it is greater than 300ns, the device must enter the shutdown state.

REC V1.1 2017.12

5 / 13

Function ta-ble

Send function table					
Control		Import	Output		
/RE	DE	DI	А	В	
X	1	1	Н	L	
х	1	0	L	Н	
0	0	X	Z	Z	
1	1 0 X Z(shutdown)				
X: any level; Z: high resistance.					

Receive function table					
Con	Control		Output		
/RE	DE	A-B	RO		
0	X	≥200mV	н		
0	X	≤-200mV	L		
0	X	Open/ ci rcui t	н		
1	X	X	Z		
X: any level; Z: high resistance.					

expl ai n

1 resume

SIT3485 is a half-duplex high-speed transceiver for RS-485/RS-422 communication, including a driver and receiver. It has fail-safe, overvoltage protection, overcurrent protection, and overheating protection functions. SIT3485 achieves error-free data transmission up to 12Mbps.

2 A total of 256 transceivers are connected to the wall

The standard RS485 receiver has an input impedance of 12k (one unit load), and the standard driver can drive up to 32 unit loads. The SIT3485 transceiver's receiver has an input impedance of 1/8 unit load (96k), allowing up to 256 transceivers to be connected in parallel on the same communication bus. These devices can be combined arbitrarily or with other RS485 transceivers, as long as the total load does not exceed 32 unit loads, they can all be connected on the same bus.

4 Driver output protection

To prevent excessive output current and high power consumption caused by faults or bus conflicts through two mechanisms. First, overcurrent protection, providing rapid short-circuit protection across the entire common-mode voltage range (refer to typical operating characteristics). Second, thermal shutdown circuit, which forces the driver output into a high-impedance state when the die temperature exceeds 140.

5 Typical application

5.1 Bus topology networking: SIT3485 RS485 transceivers are designed for bidirectional data communication on multi-drop bus transmission lines. Figure 11 shows a typical network application circuit. These devices can also be used as linear repeaters when the cable length exceeds 4000 feet. To reduce reflections, termination matching at both ends of the transmission line should be performed with their characteristic impedance, and branch connections outside the main trunk should be as short as possible.

Figure 11 Bus type RS485 half-duplex communication network

5.2 Hand-in-hand networking: Also known as the daisy chain topology, it is the standard and specification for RS485 bus cabling, recommended by organizations such as TIA for RS485 bus topologies. The wiring method involves forming hand-in-hand connections between the master control device and multiple slave devices, as shown in Figure 12. This method does not leave any branches, which is what defines a hand-in-hand connection and high communication success rates.

Figure 12 Hand-in-hand RS485 half-duplex communication network

5.3 Total Bus Port Protection: In harsh environments, RS485 communication ports are typically equipped with additional protections such as electrostatic protection and surge protection against lightning strikes. They may even require solutions to prevent the connection of 380V mains electricity to avoid damage to smart meters and industrial control hosts. Figure 13 shows three common RS485 bus port protection schemes. The first scheme involves paralleling TVS devices between the AB ports to ground, with TVS devices also connected between the AB ports. Additionally, thermal resistors are connected in series between the AB ports, and gas discharge tubes are connected in parallel to ground, forming a three-level protection system. The second scheme involves paralleling TVS devices between the AB ports to ground and connecting thermal resistors in series between the AB ports, forming a three-level protection system. The third scheme involves connecting pull-up resistors between the AB ports to power and ground, connecting TVS devices between the AB ports, and connecting thermal resistors to either port A or B.

SOP8, external dimens-ions

	Package s	i ze		D
Symbol	Least value / mm	Representative value /	Crest value / mm	
А	1.50	1.60	1.70	
A1	0.1	0.15	0.2	
A2	1.35	1.45	1.55	
b	0.355	0.400	0.455	
D	4.800	4.900	5.00	
Е	3.780	3.880	3.980	
E1	5.800	6.000	6.200	e
e		1.270BSC		
L	0.40	0.60	0.80	
с	0.153	0.203	0.253	
θ	-2 °	-4 °	-6 °	
- 42			TV - V	

DIP8, external dimensions

Package size				
Symbol	Least value / mm	Representative value /	Crest value / mm	
А	9.00	9.20	9.40	
A1	0.33	0.45	0.51	
A2		2.54TYP		
A3		1.525TYP		
В	8.40	8.70	9.10	
B1	6.20	6.40	6.60	
B2	7.32	7.62	7.92	
С	3.20	3.40	3.60	
C1	0.50	0.60	0.80	
C2	3.71	4.00	4.31	
D	0.20	0.28	0.36	
L	3.00 3.30 3.60			

Order information

Order code	Temperature	Package
SIT3485ESA	-40°C∼85°C	8 SO
SIT3485EPA	-40°C∼85°C	DIP8

The tape packaging is 2500 beads per disc