

characteristic:

- > Powered by a single power supply of 3.3V;
- Comply with ISO 11898-2 standard;
- \triangleright Total lead ESD protection exceeds \pm 16kV human model (HBM);
- ➤ Up to 120 nodes can be connected on a single bus:
- ➤ The adjustable driver conversion time can improve the radiation performance;
- ➤ Ultra-low current sleep mode: 40nA (typical value);
- > Designed for data rates up to 1Mbps;
- ➤ Hot shutdown protection;
- > Open circuit fault safety design;
- ➤ Non-scratch pulse power on and off protection for hot-swappable applications

Product shape:


Provide green and Lead-free packaging

descripti on

SIT65HVD231 is an interface chip used between CAN protocol controllers and physical buses, featuring low-current sleep mode. It can be combined with 3.3V microprocessors, microcontrollers (MCUs), and digital signal processors (DSPs) or equivalent protocol controllers equipped with CAN controllers. This chip is applied in industrial automation, control, sensor and drive systems, motor and robot control, building and temperature control, telecommunications and base station control, as well as status monitoring. It is suitable for applications that use the CAN serial communication physical layer compliant with ISO 11898 standards.

Parameter	Symbol	Test condition	Mi ni mum	Maxi mum	Uni t
Service voltage	V_{cc}		3	3.6	V
Peak transfer rate	1/t _{bit}	Non-zero code	1		Mbaud
CANH、CANL Input and output volt- age	V_{can}		-16	+16	V
Total line differential voltage	$V_{ m diff}$		1.5	3.0	V
Ambient temperature	T_{amb}		-40	125	°C

Pin distribution diagram

 R_S

CANH

8

7

1

2

D

GND

absolute rating

Parameter	Symbol	Big or small	Uni t
Supply voltage	V_{CC}	-0.3~+6	V
MCU side port volt- age	D, R	-0.5~VCC+0.5	V
Total input voltage on the bus	CANL, CANH	-18~18	V
6, 7 pin transient voltage	$V_{ m tr}$	-25~+25	V
Receiver output cu- rrent, 10		-11~11	mA
Storage working te- mperature range		-40~150	°C
Ambient temperature		-40~125	°C
Welding temperature range		300	°C
Continuous power	SOP8	400	mW
consumption	DIP8	700	mW

The maximum limit parameter value is the value beyond which the device may suffer irreversible damage. Under these conditions, the device is not operating properly and continuous operation at the maximum allowable rating may affect the reliability of the device. All voltage reference points are ground.

Pin definition

Pin number	Pin name	Pin function
1	D	CAN sends data input (low level in explicit bus state; high level in implicit bus state), also known as TXD, driver input
2	GND	Grounding connection
3	VCC	Transceiver 3.3V, power supply voltage
4	R	The CAN receives data output (low level in the explicit bus state; high level in the implicit bus state), also known as RXD, driver output
5	Vref	Vcc/2 is the reference output pin
6	CANL	Low Level CAN bus
7	CANH	High Level CAN bus
8	R_S	Mode selection pin: Strong pull-down to GND= high speed mode; strong pull-up to VCC = low power sleep mode; through 10k to 100k, resistor pull-down to GND = slope control mode.

DC characteristics of the total signal transmitter

Symbo	Parame	ter	Test conditi on	Mi ni mum	Typi cal case	Maxi mum	Uni t
	Output vo-	CANH	VI = OV, RS = OV,	2.45		VCC	
(D)	I tage (dominance)	CANL	RL = 60 (see Figure 1 and Fi- gure 2)	0.5		1.25	V
V _{OD}			VI = 0V, RS = 0V, RL = 60 (see Figure 1)	1.5	2	3	V
(D)	voltage (exp	olicit)	VI=0V, RL=60 , RS =0V (see Fig- ure 3)	1.2	2	3	V
	Output	CANH	VI = 3V, RS = 0V,		2.3		
V _O (R)	vol tage (covert gender)	CANL	RL = 60 (see Figure 1)		2.3		V
V _{OD}	Differential output voltage (hidden)		VI=3V, R _S =0V	-0.12		0.012	V
(R)			VI=3V, R _S =0V,NO LOAD	-0.5		0.05	V
I _I н	High voltag	je input	VI=2V	-30			μ A
I _I	Low voltage current	e input	VI=0.8V	-30			μ A
			CANH=-2V	-250			
I	Short circui	t output	CANH=7V			1	m
os	current		CANL=-2V	-1			A
			CANL=7V			250	
C 0	Output capad	ci tance	See receiver				
			Dormancy		0.04	1	μ A
I _C c	Supply curre	ent	VI=OV (dominant), no Load		10	17	m A
			VI=VCC (heteroz- ygous), no load		10	17	m A

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN-TMAX, typical value in VCC=+3.3V, Temp = 25)

Symbol	Parame ter	Test conditi on	Mi ni mum	Typi cal case	Maxi mum	Uni t
$t_{ m PLH}$	Propagation de- $\mathbf{t_{PLH}}$ lay (low to hi-	R = 0, i.e. short circuit (see Fi- gure 4)		35	85	
	gh)	R=10 kΩ		70	125	
		R=100 kΩ		500	870	
t _{PHL}	Propagation de- lay (high to	R=0, i.e. short circuit (see Fi- gure 4)		70	120	n s
	low)	R=10 kΩ		130	180	
		R=100 kΩ		870	1200	
$t_{sk(p)}$	Propagation de- lay symmetry	R=0, i.e. short circuit (see Fi- gure 4)		35		

REC V1.0 2020.07 3 / 13 www.sitcores.com

SIT65HVD231

3.3V power supply, high electrostatic protection, ultra-low sleep power consumption, 1Mbps high-speed CAN bus transceiver

	(t _{PLH} - t _{PHL})	R=10 kΩ		60	
		R=100 kΩ		370	
	Differential out-	R=0, i.e. short circuit (see Figure 4)	25	50	100
tr	put rise time	R=10 kΩ	80	120	160
		R=100 kΩ	600	800	1200
	Differential out-	R = 0, i.e. short cir- cuit (see Figure 4)	40	55	80
tf	put fall time	R=10 kΩ	80	125	150
		R=100 kΩ	600	825	1000

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN-TMAX, typical value in VCC=+3.3V, Temp = 25)

 $\ensuremath{\mathsf{DC}}$ characteristics of the total signal receiver

Symbol	Parameter	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
$\mathbf{V_{IT}}_{+}$	Receiver is at threshold	See Table 1		750	900	mV
V _{IT} .	Receiver negat- ive threshold	See Table 1	500	650		mV
$\mathbf{V}_{ ext{hys}}$	The Lag range	VIT+- VIT-		100		mV
V _{OH}	High level out- put voltage	-6V <vid<500mv lo="-<br">8mA (see Figure 5)</vid<500mv>	2.4			V
V_{OL}	Low level output voltage	900mV <vid<6v lo="8<br">mA (see Figure 5)</vid<6v>			0.4	V
I_i	_	VIH=7V, VCC=0V	100		350	μΑ
I_i	Total input cu- rrent for the	VIH=7V, VCC=3.3V	100		250	μΑ
I_i	bus	VIH=-2V, VCC=0V	-100		-20	μΑ
I_i		VIH=-2V, VCC=3.3V	-200		-30	μΑ
R_i	Total input resistance of the bus	ISO 11898-2 corresponding standard	20	35	50	ΚΩ
$R_{ m diff}$	Differential input resistance	ISO 11898-2 corresponding standard	40		100	ΚΩ
C_i	Total input ca- pacitance of the bus	ISO 11898-2 corresponding standard		40		pF

Di fferenti al - i nput capac nce	ISO 11898-2 corre- sponding standard	20	pF
-----------------------------------	---	----	----

REC V1.0 2020.07 **4 / 13** www.sitcores.com

I_{CC}	Supply current	See the driver				
----------	----------------	----------------	--	--	--	--

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Total line receiver switch characteristics

Symbol	Parameter	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
t_{PLH}	Receiver trans- mission delay (Iow-high)	See Figure 6		35	50	ns
t_{PHL}	Receiver trans- mission delay (high-low)	See Figure 6		35	50	ns
$t_{s{ m k}}$	Pulse shift	$ t_{PHL}-t_{PLH} $			10	ns
t_r	Output signal rise time	See Figure 6		1.5		ns
t_f	Output signal fall time	See Figure 6		1.5		ns

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Device switch characteristics

Symbo	Param eter	Test conditio n	Mi ni mum	Typi cal case	Maxi mum	Uni t
t _(LOOP1)	t(LOOP1) Loop delay 1, driver input to receiver output, impl- icit to expl- icit	R = 0, i.e. short circuit (see Fig- ure 8)		70	115	n
(2000)		R=10 kΩ R=100 kΩ		105 535	920	S
t _(LOOP2)	driver input to receiver	R = 0, i.e. short circuit (see Fig- ure 8)		100	135	n
(20012)	output, expl - icit to impl - icit	R=10 kΩ R=100 kΩ		155 830	185 990	S

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Overtemperature protection

Symbol	Parameter	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
Overtemperature shutdown	Tj(sd)		155	165	180	°C

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Control pin characteristics

Symbol	Parameter	Test condition	on Minimum		Maxi mum	Uni t
T _{WAKE}	Sleep to wake time	RS Joining square wave (see Figure 7)		3	5	us
$ m V_{ref}$	Base output vol-	-5uA <i<sub>ref<5uA</i<sub>	0.45V _{CC}		0.55V _{CC}	V
▼ ref	tage .	-50uA <i<sub>ref<50uA</i<sub>	$0.4V_{CC}$		0.6V _{CC}	V
I _{RS}	High speed mode input current	V _{RS} <1V	-450		0	μΑ
V _{RS}	Sleep input vol- tage	0 <v<sub>RS<v<sub>CC</v<sub></v<sub>	0.75V _{CC}		V _{CC}	V
I _{off}	Dropping leakage current	Vcc=0V , V _{CANH} =V _{CANL} =5V	-250		250	μА

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

supply current

Parameter	Symbol	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
Power consumption in hibernation mode $$I_{\rm CC}$$		R _S =VCC, V _I =VCC		0.04	1	μА
Visible power co- nsumption		$V_{\rm I}$ =0V, $R_{\rm S}$ =0V, LOAD=60 Ω		50	70	mA
Hidden power con- sumption		V _I =VCC, R _S =0V, NO LOAD		6	10	mA

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Functio n table

Table 1 Receiver characteristics in common mode mode (V(RS)=1.2V)

$\mathbf{V_{IC}}$	V _{ID}	V _{CANH}	V _{CANL}	R OUTPUT		
-2 V	900mV	-1.55V	-2.45V	L		
7 V	900mV	8.45V	6.55V	L	VOL	
1 V	6V	4V	-2V	L	VOL	
4 V	6V	7V	1V	L		
-2 V	500mV	-1.75V	-2.25V	Н		
7 V	500mV	7.25V	6.75V	Н	VOH	
1 V	-6V	-2V	4V	Н		
4 V	-6V	1V	7V	Н		
X	X	Open	Open	Н		

(1) H= high level; L= low level; X= not related

Table 2 Working mode

RS pin	Pattern	Actuator	Acceptor	RXD pin
Low level, V (Rs) <1.2 V, strong pull down to GND	High speed mode	Enable (on) high	Enable (turn on)	Reflects the bus status
Low level, V (Rs) <1.2 V, pulled down to GND through a resistor in the range of 10k to 100k	Slope control mode	Enable (on) high, with slope cont- rol	Enable (turn on)	Reflects the bus status
High Level, V (Rs)> 0.75 VCC	Sleep mode	Disallowed (dis- abled)	Di sal I owed (di sabl ed)	High level

Table 3 Driver functions

Import D	$\mathbf{R}_{\mathbf{S}}$	0utpu	General veh-	
Tiliport b	Ny	CANH	CANL	icle status
L	V (Rs) <1.2V (includ-	Н	L	Domi nance
Н	ing pull-down to GND through resistors in the range of 10k to 100k)	Z	Z	Covert gender
Open a way	SIeep mode	Z	Z	Covert gender
X	$V_{(Rs)} > 0.75 V_{CC}$	Z	Z	Covert gender

(1) H= high level; L= low level; Z= high resistance state

Table 4 Receiver functions

V _{ID} =CANH-CANL	$\mathbf{R_{S}}$	Output R
V _{ID} ≥0.9V	X	L
0.5< V _{ID} <0.9V	X	?
V _{ID} ≤0.5V	X	Н
Open	X	Н

(2) H= high level; L= low level;? = uncertain; X= not related

test circuit

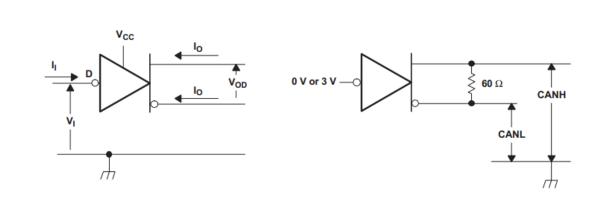


Figure 1 Definition of driver voltage and current test

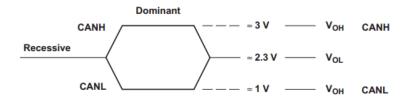


Figure 2 Bus logic voltage definition

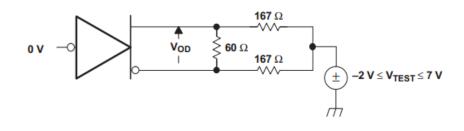
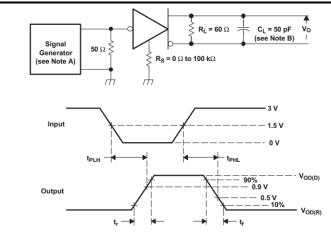



Figure 3 Driver VOD test circuit

A. Characteristics of input pulse generator: PRR is less than or equal to 500KHz, duty cycle is 50%, tr is less than 6ns, tf is less than 6ns, Zo is 50

B and CL include instruments and fixed capacitors with an error of less than 20%.

Figure 4 Driver test circuit and voltage waveform

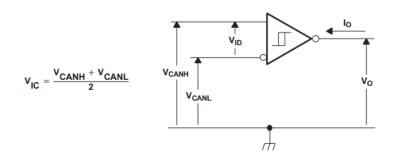
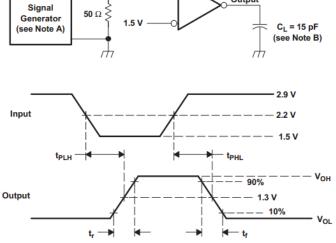



Figure 5 Receiver voltage and current definition

A. Characteristics of input pulse generator: PRR is less than or equal to 500 KHz, duty cycle is 50%, tr is less than or equal to 6 ns, tf is less than or equal to 6 ns, Zo is 50

B and CL include instruments and fixed capacitors with an error of less than 20%.

Figure 6 Receiver test circuit and voltage waveform

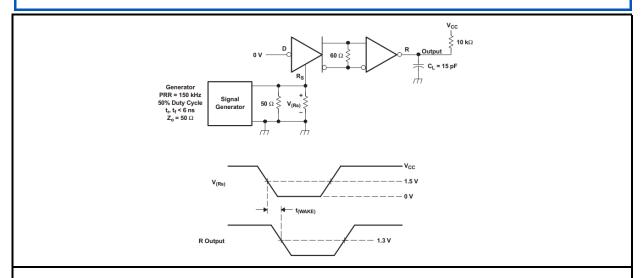
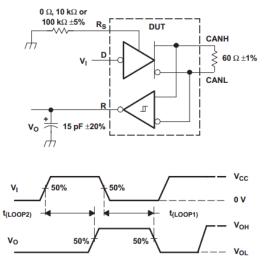



Figure 7 t (WAKE) test circuit and voltage waveform

A. Characteristics of input pulse generator: PRR is less than or equal to 125KHz, 50% duty cycle, tr <6ns, tf <6ns, Zo = 50

Figure 8 t (LOOP) test circuit and voltage waveform

expl ai n

i resume

SIT65HVD231 is an interface chip used between CAN protocol controllers and physical buses, featuring a low current sleep mode of up to $1\,\mu$ A. When combined with 3.3V microprocessors, microcontrollers (MCUs), and digital signal processors (DSPs) or equivalent protocol controllers equipped with CAN controllers, it can be applied in industrial automation, control, sensor and drive systems, motor and robot control, building and temperature control, telecommunications and base station control, as well as status monitoring. The data rate can reach up to 1Mbps, fully compatible with the "ISO 11898" standard.

2 short-circuit protection

The drive level of SIT65HVD231 has a current limiting protection function to prevent the drive circuit from short-circuiting to the positive and negative power supply voltage. When a short circuit occurs, the power consumption will increase. The short circuit protection function can protect the drive level from damage.

3 Over temperature protection

SIT65HVD231 It has overtemperature protection function. When the junction temperature exceeds 160 , the current of the driver level will be reduced, because the driver tube is the main energy consuming component, and the current reduction can reduce power consumption and thus reduce the chip temperature. At the same time, other parts of the chip still work normally.

4 Electrical transient protection

Electrical transients often occur in automotive applications, and SIT65HVD231's CANH and CANL have the function of preventing electrical transients from damaging.

5 control model

Three different operating modes are provided by the RS pin (pin 8): high speed mode, slope control mode and low power mode.

(1) High speed mode:

Applying a logic low level to the RS pin (pin 8) selects high-speed mode. High-speed operation is typically used in industrial applications. High-speed mode allows for output switching at the fastest possible rate and imposes no internal limits on the rise and fall times of the output. If high-speed transitions affect radiation performance, slope control mode can be employed.

If the application requires both high-speed and low-power sleep modes, the mode selection pin can be directly connected to a general-purpose output pin of the microprocessor, MCU, or DSP. When the controller outputs a logic low level (<1.2 V), the device enters high-speed mode; when the controller outputs a logic high level (> 0.75 VCC), the device enters sleep mode.

(2) Slope control mode

For many applications that still use unshielded twisted pair bus cables to reduce system costs, electromagnetic compatibility is critical. The device has added a slope control mode, which can reduce the electromagnetic interference caused by the rise and fall times of the driver and the harmonics generated as a result. By connecting a resistor between RS (pin 8) and ground or logic low voltage, the rise and fall slopes of the driver output can be adjusted. The slope of the driver output signal is proportional to the output current of the pin, and this slope control is achieved through an external resistor (typically 10k ~100k).

(3) Sleep mode

If a logic high level (> 0.75 VCC) is applied to the RS (pin 8), the device circuit will enter ultra-low current sleep mode. During this mode, both the driver and receiver are turned off. In this sleep mode, communication between the device and the bus will be impossible. The device will remain in sleep mode until the RS pin is reactivated by applying a logic low level.

SOP8, external dimensions

Package si ze Symbol Least value /mm Representative va-lue /mm Crest value /mm A 1.50 1.60 1.70 0.15 A1 0.1 0.2 1.35 1.45 1.55 Ξ A2 b 0.355 0.400 0.455 4.900 D 4.800 5.00 E 3.780 3.880 3.980 E1 5.800 6.000 6.200 1.270BSC e L 0.40 0.60 0.80 0.153 0.203 0.253 c θ -2° -4° -6°

DIP8, external dimensions

	Packaç	ge size	
Symbol	Least value /mm	Representative va- lue /mm	Crest value /mm
A	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2		2.54TYP	
A3		1.525TYP	
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60
A1 -	A -	A2 L	

Order information

Order code	Temperature	Package
SIT65HVD231DR	-40°C~125°C	SOP8
SIT65HVD231P	-40°C~125°C	DIP8

The tape packaging is 2500 beads per disc