

Corel 3.3V power supply, with diagnostic loop function,

high-speed CAN bus transceiver

characteristic:

- Powered by a single power supply of 3.3V;
- Comply with ISO 11898-2 standard;

> Total lead ESD protection exceeds $\pm 12kV$ human model (HBM);

> Up to 120 nodes can be connected on a single bus;

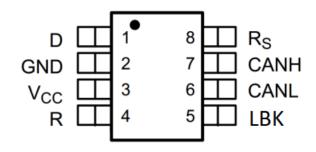
> The adjustable driver conversion time can improve the radiation performance;

Low current standby mode: 650µA (typical value);

- Designed for data rates up to 1Mbps;
- ➢ Hot shutdown protection;
- > Open circuit fault safety design;
- > Non-scratch pulse power on and off protection
- for hot-swappable applications

Product appearance:

Provide green and lead-free packa-


gi ng

descripti on

SIT65HVD233 is an interface chip used between CAN protocol controllers and physical buses. It works with 3.3V microprocessors, microcontrollers (MCUs), and digital signal processors (DSPs) or equivalent protocol controllers equipped with CAN controllers. It is applied in industrial automation, control, sensor and drive systems, motor and robot control, building and temperature control, telecommunications and base station control, as well as status monitoring. It is suitable for applications that use the CAN serial communication physical layer compliant with ISO 11898 standards.

Parameter	Symbol	Test condition	Minimum	Maxi mum	Uni t
Service voltage	V _{cc}		3	3.6	V
Peak transfer rate	1/t _{bit}	Non-zero code	1		Mbaud
CANH, CANL Input and output volt- age	V _{can}		-36	+36	V
Total line differential voltage	$\mathbf{V}_{\mathrm{diff}}$		1.5	3.0	V
Ambient temperature	T _{amb}		-40	125	°C

Pin distribution diagram

absolute rating

Parameter	Symbol	Big or small	Uni t
Supply voltage	V _{CC}	-0.3~+6	V
MCU side port volt- age	D, R	-0.5~VCC+0.5	V
Total input voltage on the bus	CANL, CANH	-36~36	V
6, Transient voltage at pin 7	V _{tr}	-100~+100	V
Receiver output cu- rrent, 10		-11~11	mA
Storage working te- mperature range		-40~150	°C
Ambient temperature		-40~125	°C
Welding temperature range		300	°C
Continuous power	SOP8	400	mW
consumption	DIP8	700	mW

The maximum limit parameter value is the value beyond which the device may suffer irreversible damage. Under these conditions, it is not conducive to the normal operation of the device. Continuous operation of the device at the maximum allowable rating may affect the reliability of the device. All voltage reference points are ground.

Pin definition

Pin number	Pin name	Pin function
1	D	CAN sends data input (low level in explicit bus state; high level in implicit bus state), also known as TXD, driver input
2	GND	Grounding connection
3	VCC	Transceiver 3.3V, power supply voltage
4	R	The CAN receives data output (low level in the explicit bus state; high level in the implicit bus state), also known as RXD, driver output
5	LBK	Ringback mode input pin
6	CANL	Low level CAN bus
7	CANH	High level CAN bus
8	R _S	Mode selection pin: Strong pull-down to GND= high speed mode; strong pull-up to VCC = low power mode; through 10 k to 100k , resistor pull-down to GND = slope control

REC V1.6	5 2019.12

SIT65HVD233

3.3V power supply, with diagnostic loop function, highspeed CAN bus transceiver

DC characteri sti cs of the total signal transmitter

i Corel

Symbo I	Parame	ter	Test conditi on	Minimum	Typi cal case	Maximum	Uni t
V _O (D)	Output vo- I tage (domi nance)	CANH CANL	VI = OV, RS = OV, RL = 60 (see Figure 1 and Fi- gure 2)	2.45 0.5		VCC 1.25	v
V _{OD}	Differential	•	-	1.5	2	3	V
(D)	voltage (exp	licit)	VI=OV, RL=60 , RS =OV (see Fig- ure 3)	1.2	2	3	v
	Output	CANH	VI = 3V, RS = 0V,		2.3		
V _O (R)	vol tage (covert gender)	CANL	RL = 60 (see Figure 1)		2.3		v
V _{OD}	Differential output voltage (hidden)		VI=3V, R _S =0V	-0.12		0.012	V
(R)			VI=3V, R _s =0V,NO LOAD	-0.5		0.05	V
I _I н	High voltag current	je input	VI=2V	-30		30	μ A
I _I L	Low voltage current	e input	VI=0.8V	-30		30	μ A
			CANH=-7V	-250			
I	Short circui	t outnut	CANH=12V			1	m
OS	current		CANL=-7V	-1			А
			CANL=12V			250	
C o	Output capacitance		See receiver				
	Supply current		Await the oppor- tune moment		650	950	μ A
I _С с			VI=OV (dominant), no load			6	m A
			VI=VCC (heteroz- ygous), no load			6	m A

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Symbol	Parame ter	Test conditi on	Minimum	Typi cal case	Maximum	Uni t
t _{PLH}	Propagation de- lay (low to hi-			35	85	
	gh)	R=10 kΩ		70	125	
		R=100 kΩ		500	870	
t _{PHL}	Propagation de- lay (high to	R = 0, i.e. short circuit (see Fi- gure 4)		70	120	n s
	low)	R=10 kΩ		130	180	
		R=100 kΩ		870	1200	
t _{sk(p)}	Propagation de- lay symmetry	R = 0, i.e. short circuit (see Fi- gure 4)		35		

3 / 13

SIT65HVD233 Corel 3.3V power supply, with diagnostic loop function, high-speed CAN bus transceiver

	$(t_{PLH} - t_{PHL})$	R=10 kΩ		60	
		R=100 kΩ		370	
tr	Differential out- put rise time	R = 0, i.e. short cir- cuit (see Figure 4)	20		80
		R=10 kΩ	30		160
		R=100 kΩ	300		1400
tf	Differential out-	R = 0, i.e. short cir- cuit (see Figure 4)	20		80
	put fall time	R=10 kΩ	30		160
		R=100 kΩ	300		1400

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN-TMAX, typical value in VCC=+3.3V, Temp = 25)

DC characteristics of the total signal receiver

Symbol	Parameter	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
V _{IT+}	Receiver is at threshold	See Table 1		750	900	mV
V _{IT} .	Receiver negat- ive threshold	See Table 1	500	650		mV
V _{hys}	The lag range	VIT+- VIT-		100		mV
V _{OH}	High level out- put voltage	-6V <vid<500mv lo="-<br">8mA (see Figure 5)</vid<500mv>	2.4			V
V _{OL}	Low level output voltage	900mV <vid<6v lo="8<br">mA (see Figure 5)</vid<6v>			0.4	V
I _i	_	VIH=12V, VCC=0V	100		600	uA
I _i	Total input cu- rrent for the	VIH=12V, VCC=3.3V	100		500	μΑ
I _i	bus	VIH=-7V, VCC=0V	-450		-20	μΑ
I _i	_	VIH=-7V, VCC=3.3V	-610		-30	μΑ
R _i	Total input re- sistance of the bus	ISO 11898-2 corre- sponding standard	20	35	50	KΩ
R _{diff}	Differential input resistance	ISO 11898-2 corre- sponding standard	40		100	KΩ
C _i	Total input ca- pacitance of the bus	ISO 11898-2 corre- sponding standard		40		pF

C _{diff}	Differential- input capacita- nce	ISO 11898-2 corre- sponding standard		20		pF
-------------------	---	---	--	----	--	----

SIT65HVD233 Corel 3.3V power supply, with diagnostic loop function, high-speed CAN bus transceiver

Supply current See the

See the driver

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN-TMAX, typical value in VCC=+3.3V, Temp = 25)

Total line receiver switch characteristics

Symbol	Parameter	Test condition	Minimum	Typi cal case	Maxi mum	Uni t
t _{PLH}	Receiver propaga- tion delay (low- high)	See Figure 6		35	60	ns
t _{PHL}	Receiver propaga- tion delay (high- low)	See Figure 6		35	60	ns
t _{sk}	Pulse shift	$ t_{PHL} - t_{PLH} $			10	ns
t _r	Output signal rise time	See Figure 6		1.5		ns
t _f	Output signal fall time	See Figure 6		1.5		ns

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Device switching characteristics

Symbo I	Param eter	Test conditio n	Minimum	Typi cal case	Maximum	Uni t
	Loop delay 1, driver input to receiver	R = 0, i.e. short circuit (see Fig- ure 8)		70	135	n s
t _(LOOP1)	output, impl- icit to expl- icit	R=10 kΩ		105	190	n s
		R=100 kΩ		535	1000	n s
	driver input to receiver output, expl-	R = 0, i.e. short circuit (see Fig- ure 8)		70	165	n s
t _(LOOP2)		R=10 kΩ		105	190	n s
		R=100 kΩ		535	1000	n s
t _(LBK)	The loopback delay drives the input of the receiver	(See figure 9)		7.5	12	n s

utput							
(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)							
Over temperature protection							
Parameter	Test condition	Minimum	Typi cal case	Maximum	Uni t		
Tj(sd)		155	165	180	°C		
(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)							
	Parameter Tj(sd)	ParameterTest conditionTj(sd)	ParameterTest conditionMinimumTj(sd)155	ParameterTest conditionMinimumTypical caseTj(sd)155165	ParameterTest conditionMinimumTypical caseMaximumTj(sd)155165180		

5 / 13

Control pin characteristics

Symbol	Parameter	Test condition	Minimum	Typi cal case	Maxi mum	Uni t
T _{WAKE}	Wait until the wake time	RS Joining square wave (see Figure 7)		0.55	1.5	μs
I _{RS}	High speed mode input current	V _{RS} <1V	-450		0	μΑ
V _{RS}	Standby/sleep input voltage	0 <v<sub>RS<v<sub>CC</v<sub></v<sub>	$0.75 V_{CC}$		V _{CC}	V
I _{off}	Dropping leakage current	Vcc=0V , $V_{CANH}=V_{CANL}=5V$	-250		250	μΑ

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Parameter	Symbol	Test condition	Minimum	Typi cal case	Maxi mum	Uni t
Standby power co- nsumption	I _{CC}	R _S =VCC, V _I =VCC		650	950	μΑ
Visible power co- nsumption		V _I =0V, R _S =0V, LOAD=60Ω		50	70	mA
Hidden power con- sumption		V _I =VCC, R _S =0V, NO LOAD			6	mA

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value VCC=+3.3V, Temp = 25)

Functio n table

Table 1 Receiver characteristics in common mode mode (V(RS)=1.2V)

V _{ID}	V _{CANH}	V _{CANL}	R OU	TPUT
900mV	-6.1V	-7V	L	
900mV	12V	11.1V	L	VOL
6V	-1V	-7V	L	VOL
6V	12V	6V	L	
500mV	-6.5V	-7V	Н	
500mV	12V	11.5V	Н	VOH
-6V	-7V	-1V	Н	von
-6V	6V	12V	Н	
X	Open	Open	Н	

(1) H= high level; L= low level; X= not related

supply current

	Table 2 Driver functions						
	INPUTS			OUTPUTS			
D	LBK	R _s	CANH	CANL	General vehicle status		
Х	Х	>0.75V _{CC}	Z	Z	Covert ge- nder		
L	L or open		Н	L	Domi nance		
H or open	X	<0.33V _{CC}	Z	Z	Covert ge- nder		
X	Н	0.33V _{CC}	Z	Z	Covert ge- nder		

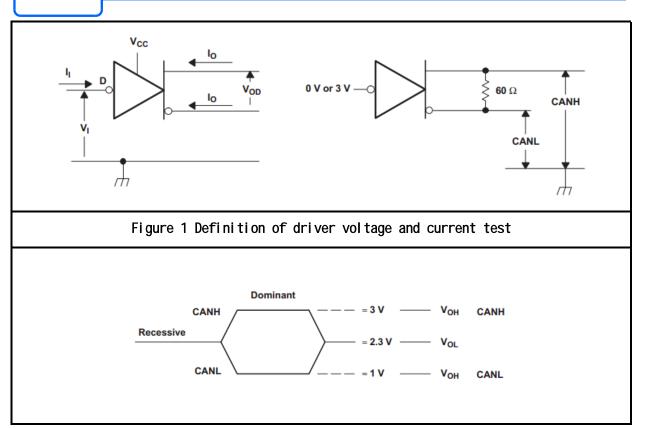
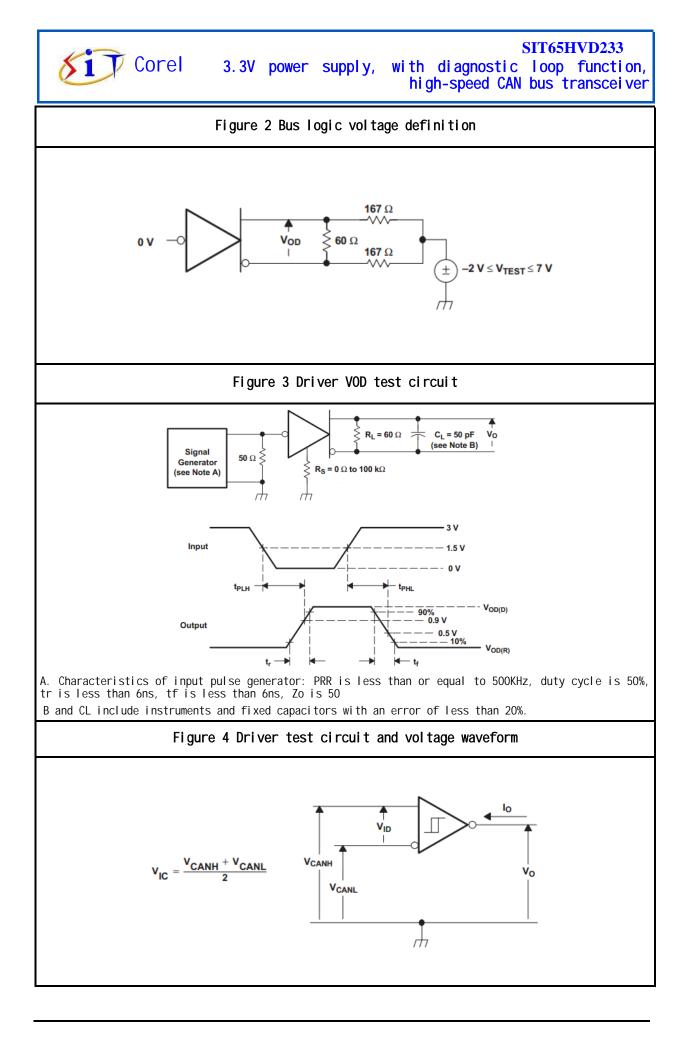
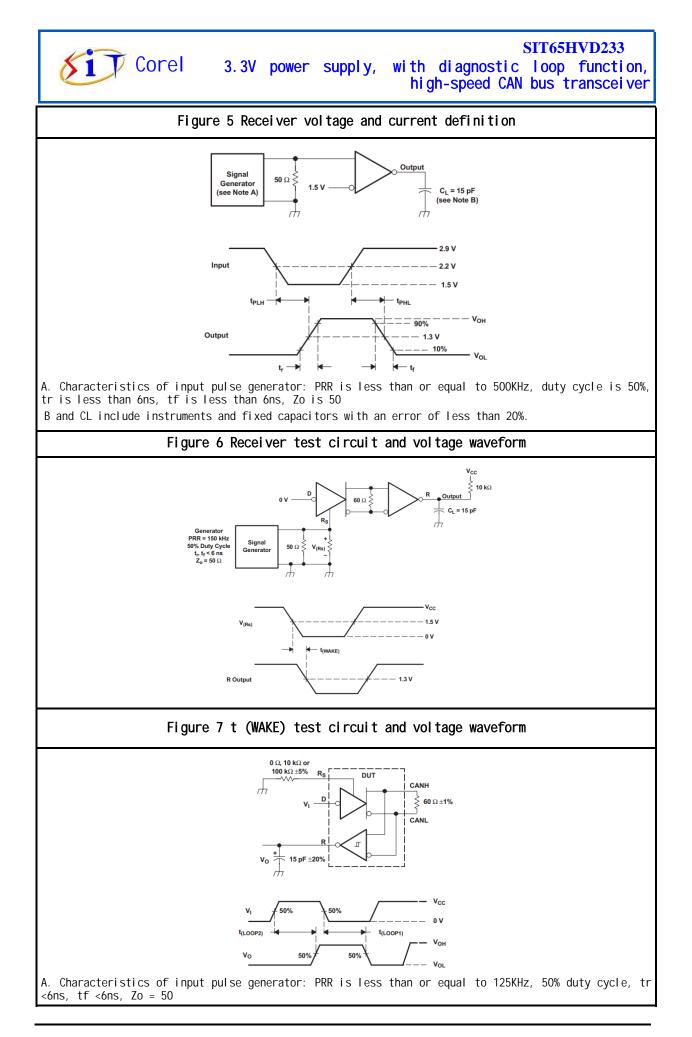
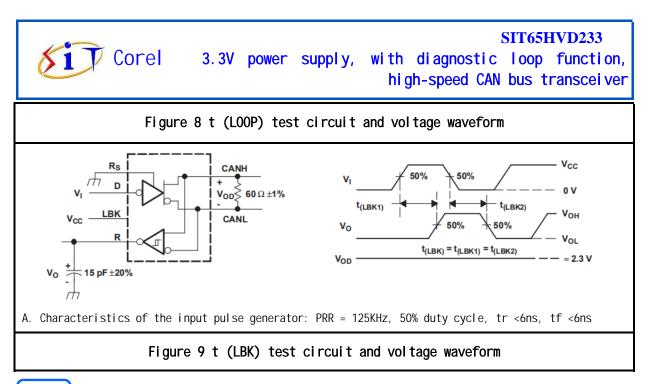

(1) H= high level; L= low level; Z= high resistance state

Table 3	Receiver	functions
---------	----------	-----------


	OUTPUT			
General veh- icle status	V _{ID} =CANH-CANL	LBK	D	R
Domi nance	$V_{ID} \ge 0.9 V$	L or open	Х	L
Covert gender	$V_{ID} \leq 0.5 V$ or open	L or open	H or open	Н
?	$0.5 < V_{ID} < 0.9V$	L or open	H or open	?
X	Х	Н	L	L
X	Х	Н	Н	Н


(2) H= high level; L= low level;? = uncertain; X= not related


test circuit

REC V1.6 2019.12

expl ai n

1 resume

SIT65HVD233 is an interface chip used between CAN protocol controllers and physical buses. When combined with 3.3V microprocessors, microcontrollers (MCUs), and digital signal processors (DSPs) or equivalent protocol controllers equipped with CAN controllers, it can be applied in industrial automation, control, sensor and drive systems, motor and robot control, building and temperature control, telecommunications and base station control, as well as status monitoring. It supports speeds up to 1Mbps and fully complies with the "ISO 11898" standard.

2 short-circuit protection

The drive level of SIT65HVD233 has a current limiting protection function to prevent the drive circuit from short-circuiting to the positive and negative power supply voltage. When a short circuit occurs, the power consumption will increase. The short circuit protection function can protect the drive level from damage.

3 Over temperature protection

SIT65HVD233 It has overtemperature protection function. When the junction temperature exceeds 160 , the current of the driver level will be reduced, because the driver tube is the main energy consuming component, and the current reduction can reduce the power consumption and thus reduce the chip temperature. At the same time, other parts of the chip still maintain normal operation.

4 Electrical transient protection

Electrical transients often occur in automotive applications, and SIT65HVD233 CANH and CANL have the function of preventing electrical transients from damaging. **5 control model**

Three different operating modes are provided by the RS pin (pin 8): high speed mode, slope control mode and low power mode.

(1) High speed mode:

Applying a logic low level to the RS pin (pin 8) selects the high-speed mode. High-speed operation is typically used in industrial applications. High-speed mode allows the output to switch as quickly as possible and imposes no internal limits on the rise and fall times of the output. If high-speed switching affects radiation performance, a slope control mode can be used.

If the application requires both high speed and low power standby modes, the mode selection pin can be directly connected to the microprocessor

The MCU or DSP has a general output pin. When the controller outputs a logic low level (<1.2 V), the device enters high speed mode; when the controller outputs a logic high level (> 0.75 VCC), the device enters standby mode.

(2) Slope control mode

For many applications that still use unshielded twisted pair bus cables to reduce system costs, electromagnetic compatibility is critical. The device has added a slope control mode, which can reduce the electromagnetic interference caused by the rise and fall times of the driver and the harmonics generated as a result. By connecting a resistor between RS (pin 8) and ground or logic low voltage, the rise and fall slopes of the driver output can be adjusted. The slope of the driver output signal is proportional to the output current of the pin, and this slope control is achieved through an external resistor (typically 10k to 100k).

(3) standby mode

If a logic high level (> 0.75 VCC) is applied to RS (pin 8), the device circuit will enter low current, listen-only standby mode. During this mode, the driver will be turned off, and the receiver will remain active. In this listen-only state, the transceiver is completely passive with respect to the bus. There is no difference whether or not a slew control resistor is placed. When a rising edge of an active state (bus differential voltage> 900mV (typical value)) appears on the bus, the microprocessor can put the transceiver out of this low-power standby mode. The microprocessor senses bus activity and reactivates the driver circuit by applying a logic low level (<1.2V) to RS (pin 8).

6 Test loop function

The diagnostic loopback or internal loopback function of the SIT65HVD233 is enabled by a high-level input on pin 5 LBK. This mode disables the driver output while keeping the bus pin biased to the implicit state. Additionally, this mode logically redirects D data input (sending data) to the receive data output pin, creating an internal loopback to the receive data path. This simulates the loopback of a CAN transceiver under normal conditions, as the receiver drives the output loopback to the R (receive data) pin. This mode allows the host protocol controller to input and read bit sequences or CAN messages for diagnostics without interfering with the CAN bus.

If the LBK pin is not used, it may be grounded (GND). However, it is internally pulled down (default low level input) and may remain open if not used.

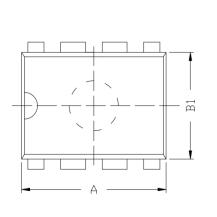
3.3V power supply, with diagnost

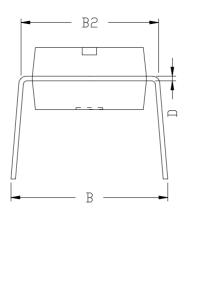
with diagnostic loop function, high-speed CAN bus transceiver

SIT65HVD233

SOP8, external dimensions

	Package s		
Symbol	Least value /mm	Representative va- lue /mm	Crest value /mm
А	1.50	1.60	1.70
A1	0.1	0.15	0.2
A2	1.35	1.45	1.55
b	0.355	0.400	0.455
D	4.800	4.900	5.00
Е	3.780	3.880	3.980
E1	5.800	6.000	6.200
e		1.270BSC	
L	0.40	0.60	0.80
c	0.153	0.203	0.253
θ	-2 °	-4 °	-6 °
A2			


3.3V power supply,


SIT65HVD233

with diagnostic loop function, high-speed CAN bus transceiver

DIP8, external dimensions

Package size						
Symbol	Least value /mm	Representative va- lue/mm	Crest value /mm			
А	9.00	9.20	9.40			
A1	0.33	0.45	0.51			
A2		2.54TYP				
A3		1.525TYP				
В	8.40	8.70	9.10			
B1	6.20	6.40	6.60			
B2	7.32	7.62	7.92			
С	3.20	3.40	3.60			
C1	C1 0.50		0.80			
C2	3.71	4.00	4.31			
D	0.20	0.28	0.36			
L	3.00	3.30	3.60			
$A = \begin{bmatrix} A \\ C \\$						

Order information

Order code	Temperature	Package
SIT65HVD233DR	-40°C~125°C	SOP8
SIT65HVD233P	-40°C~125°C	DIP8

The tape packaging is 2500 beads per disc