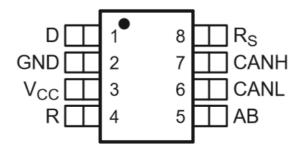


characteristic:

- Powered by a single 3.3V power supply;
- ➤ Comply with ISO 11898-2 standard;
- \triangleright Total lead ESD protection exceeds \pm 12kV human model (HBM);
- ➤ Up to 120 nodes can be connected on a single bus;
- ➤ The adjustable driver conversion time can improve the radiation performance;
- \triangleright Low current standby mode: 360 μ A (typical value);
- Designed for data rates up to 1Mbps;
- ➤ Hot shutdown protection;
- > Open circuit fault safety design;
- Non-scratch pulse power on and off protection

for hot-swappable applications

Product appearance:



Provide green and Lead-free packaging

SIT65HVD235 is an interface chip used between CAN protocol controllers and physical buses. It works with 3.3V microprocessors, microcontrollers (MCUs), and digital signal processors (DSPs) or equivalent protocol controllers equipped with CAN controllers. It is applied in industrial automation, control, sensor and drive systems, motor and robot control, building and temperature control, telecommunications and base station control, as well as status monitoring. It is suitable for applications that use the CAN serial communication physical layer in compliance with ISO 11898 standards.

Parameter	Symbol	Test condition	Mi ni mum	Maxi mum	Uni t
Servi ce vol tage	V_{cc}		3	3.6	V
Peak transfer rate	1/t _{bit}	Non-zero code	1		Mbaud
CANH、CANL Input and output volt- age	V_{can}		-36	+36	V
Total line differential voltage	$V_{ m diff}$		1.5	3.0	V
Ambient temperature	T_{amb}		-40	125	°C

Pin distribution diagram

absolute rating

Parameter	Symbol	Big or small	Uni t
Supply voltage	V_{CC}	-0.3~+6	V
MCU side port volt- age	D, R	-0.5~VCC+0.5	V
Total input voltage on the bus	CANL, CANH	-36~36	V
6, Transient voltage at pin 7	$V_{ m tr}$	-100~+100	V
Receiver output cu- rrent, 10		-11~11	mA
Storage working te- mperature range		-40~150	°C
Ambient temperature		-40~125	°C
Welding temperature range		300	°C
Continuous power	SOP8	400	mW
consumption	DIP8	700	mW

The maximum limit parameter value is the value beyond which the device may suffer irreversible damage. Under these conditions, it is not conducive to the normal operation of the device. Continuous operation of the device at the maximum allowable rating may affect the reliability of the device. All voltage reference points are ground.

Pin definition

Pin number	Pin name	Pin function
1	D	CAN sends data input (low level in explicit bus state; high level in implicit bus state), also known as TXD, driver input
2	GND	Grounding connection
3	VCC	Transceiver 3.3V, power supply voltage
4	R	The CAN receives data output (low level in the explicit bus state; high level in the implicit bus state), also known as RXD, driver output
5	AB	The automatic baud rate loopback mode inputs control pins
6	CANL	Low level CAN bus
7	CANH	High Level CAN bus
8	R_S	Mode selection pin: Strong pull-down to GND= high speed mode; strong pull-up to VCC = low power mode; through 10 k to 100k, resistor pull-down to GND = slope control

mode.

2 / 14

REC V1.0 2020.04

www.sitcores.com

DC characteri sti cs of the total signal transmitter

Symbo	Parame	ter	Test conditi on	Mi ni mum	Typi cal case	Maxi mum	Uni t
	Output vo-	CANH	VI = OV, RS = OV,	2.45		VCC	
$\mathbf{V_{O}}$ (D)	I tage (dominance)	CANL	RL = 60 (see Figure 1 and Fi- gure 2)	0.5		1.25	V
$\mathbf{V}_{\mathbf{OD}}$	Differential	output	VI = 0V, RS = 0V, RL = 60 (see Figure 1)	1.5	2	3	V
(D)	voltage (exp	licit)	VI=0V, RL=60 , RS =0V (see Fig- ure 3)	1.2	2	3	V
	Output	CANH	VI = 3V, RS = 0V,		2.3		
V _O (R)	vol tage (covert gender)	CANL	RL = 60 (see Figure 1)		2.3		V
V _{OD}	Di fferenti al	output	VI=3V, R _S =0V	-0.12		0.012	V
(R)	vol tage (hi dden)		VI=3V, R _S =0V,NO LOAD	-0.5		0.05	V
I _I н	High voltag	je input	VI=2V	-30		30	μ A
I _I L	Low voltage current	e input	VI=0.8V	-30		30	μ A
			CANH=-7V	-250			
I	Short circui	t output	CANH=12V			1	m
os	current		CANL=-7V	-1			A
			CANL=12V			250	
C o	Output capad	ci tance	See receiver				
			Await the opportune moment		360	600	μ A
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	Supply curre	ent	VI=OV (dominant), no load			6	m A
			VI=VCC (heteroz- ygous), no Load			6	m A

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Symbol	Parame ter	Test conditi on	Mi ni mum	Typi cal case	Maxi mum	Uni t
$t_{ m PLH}$	Propagation de- lay (low to hi-	R = 0, i.e. short circuit (see Fi- gure 4)		35	85	
	gh)	R=10 kΩ		70	125	
		R=100 kΩ		500	870	n
t _{PHL}	Propagation de- lay (high to	R = 0, i.e. short circuit (see Fi- gure 4)		70	120	S
	l ow)	R=10 kΩ		130	180	
		R=100 kΩ		870	1200	

REC V1.0 2020.04 3 / 14 www.sitcores.com

SIT65HVD235

3.3V power supply, automatic baud rate loopback function, high speed CAN bus transceiver

	Propagation delay	R = 0, i.e. short cir- cuit (see Figure 4)		35		
$\mathbf{t}_{\mathrm{sk}(\mathbf{p})}$	symmetry (t _{PLH} - t _{PHL})	R=10 kΩ		60		
	Y YLIN YHL /	R=100 kΩ		370		
	. Differential out-	R = 0, i.e. short cir- cuit (see Figure 4)	20		80	
tr	put rise time	R=10 kΩ	30		160	
		R=100 kΩ	300		1400	
	Differential out-	R = 0, i.e. short cir- cuit (see Figure 4)	20		80	
tf	put fall time	R=10 kΩ	30		160	
		R=100 kΩ	300		1400	

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

DC characteristics of the total signal receiver

Symbol	Parameter	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
V_{IT+}	Receiver is at threshold	See Table 1		750	900	mV
V _{IT} .	Receiver negat- ive threshold	See Table 1	500	650		mV
V_{hys}	The Lag range	VIT+- VIT-		100		mV
V _{OH}	High level out- put voltage	-6V <vid<500mv lo="-<br">8mA (see Figure 5)</vid<500mv>	2.4			V
V _{OL}	Low level output voltage	900mV <vid<6v lo="8<br">mA (see Figure 5)</vid<6v>			0.4	V
I_i		VIH=12V, VCC=0V	100		600	uA
I_i	Total input cu-	VIH=12V, VCC=3.3V	100		500	μΑ
I_i	bus	VIH=-7V, VCC=0V	-450		-20	μΑ
I_i		VIH=-7V, VCC=3.3V	-610		-30	μΑ
R_i	Total input resistance of the bus	ISO 11898-2 corresponding standard	20	35	50	ΚΩ
$R_{\rm diff}$	Differential input resistance	ISO 11898-2 corresponding standard	40		100	ΚΩ
	Total input ca-	ISO 11898-2 corre-		40		pF

C_i	pacitance of the bus	sponding standard				
-------	----------------------	-------------------	--	--	--	--

REC V1.0 2020.04 4 / 14 www.sitcores.com

SIT65HVD235

Corel 3.3V power supply, automatic baud rate loopback function, high speed CAN bus transceiver

C _{diff}	Differential - input capacita- nce	ISO 11898-2 corresponding standard	20	pF
I_{CC}	Supply current	See the driver		

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Total line receiver switch characte-

Symbol	Parameter	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
t_{PLH}	Receiver propaga- tion delay (Iow- high)	See Figure 6		35	60	ns
t_{PHL}	Receiver propaga- tion delay (high- low)	See Figure 6		35	60	ns
$t_{s\mathrm{k}}$	Pulse shift	$ t_{PHL}-t_{PLH} $			10	ns
t_r	Output signal rise time	See Figure 6		1.5		ns
t_f	Output signal fall time	See Figure 6		1.5		ns

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Device switch characteristics

Symbo	Param eter	Test conditio n	Mi ni mum	Typi cal case	Maxi mum	Uni t
	driver input to receiver	R=0, i.e. short circuit (see Figure 8)		70	135	n s
	icit to expl-	R=10 kΩ		105	190	n s
		R=100 kΩ		535	1000	n s
	driver input to receiver	R = 0, i.e. short circuit (see Fig- ure 8)		70	165	n s
t _(LOOP2)	output, expl - icit to impl - icit	R=10 kΩ		105	190	n s
		R=100 kΩ		535	1000	n s
	The Loopback					

t _(AB1)	delay drives the input of the driver to the output of the receiver	(See figure 9)		10	20	n s
t _(AB2)	The Loopback delay drives the input of the receiver to the output	(See figure 10)	1	35	60	n s

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

REC V1.0 2020.04

5 / 14

www.sitcores.com

Over temperature protection

Symbol	Parameter	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
Overtemperature shutdown	Tj(sd)		155	165	180	°C

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Control pin characteristics

Symbol	Parameter	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
T_{WAKE}	Wait until the wake time	RS Joining square wave (see Figure 7)		0.55	1.5	μs
I_{RS}	High speed mode input current	V _{RS} <1V	-450		0	μА
$\mathbf{V}_{\mathbf{RS}}$	Standby/sleep input voltage	0 <v<sub>RS<v<sub>CC</v<sub></v<sub>	0.75V _{CC}		V_{CC}	V
$\mathbf{I}_{ ext{off}}$	Dropping leakage current	Vcc=0V , V _{CANH} =V _{CANL} =5V	-250		250	μА

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

supply current

Parameter	Symbol	Test condition	Mi ni mum	Typi cal case	Maxi mum	Uni t
Standby power co- nsumption	I_{CC}	$R_S=VCC, V_I=VCC$		360	600	μА
Visible power co- nsumption		V_{I} =0V, R_{S} =0V, LOAD=60 Ω		50	70	mA
Hidden power con- sumption		V _I =VCC, R _S =0V, NO LOAD			6	mA

(If not otherwise stated, VCC=3.3V \pm 10%, Temp=TMIN~TMAX, typical value in VCC=+3.3V, Temp = 25)

Functio n table

Table 1 Receiver characteristics in common mode mode (V(RS)=1.2V)

V _{ID}	V _{CANH}	V _{CANL}	R OUTPUT	
900mV	-6.1V	-7V	L	
900mV	12V	11.1V	L	VOL
6V	-1V	-7V	L	VOL
6V	12V	6V	L	
500mV	-6.5V	-7V	Н	
500mV	12V	11.5V	Н	VOH
-6V	-7V	-1V	Н	VOII
-6V	6V	12V	Н	
X	Open	Open	Н	

(1) H= high level; L= low level; X= not related

Table 2 Driver functions

INPUTS			OUTPUTS		
D	LBK	R_S	CANH	CANL	General vehicle status
X	X	>0.75V _{CC}	Z	Z	Covert ge- nder
L	L or open		Н	L	Domi nance
H or open	X	<0.33V _{CC}	Z	Z	Covert ge- nder
X	Н	0.33V _{CC}	Z	Z	Covert ge- nder

(1) H= high level; L= low level; Z= high resistance state

Table 3 Receiver functions

	OUTPUT			
General veh- icle status	V _{ID} =CANH-CANL	LBK	D	R
Domi nance	$V_{ID} \ge 0.9V$	L or open	X	L
Covert gender	V _{ID} ≤0.5V or open	L or open	H or open	Н
?	$0.5 < V_{ID} < 0.9V$	L or open	H or open	?
Domi nance	V _{ID} ≥0.9V	Н	X	L
Covert gender	V _{ID} ≤0.5V or open	Н	Н	Н
Covert gender	V _{ID} ≤0.5V or open	Н	L	L
?	$0.5 < V_{ID} < 0.9V$	Н	L	L

(2) H= high level; L= low level;? = uncertain; X= not related

test circuit

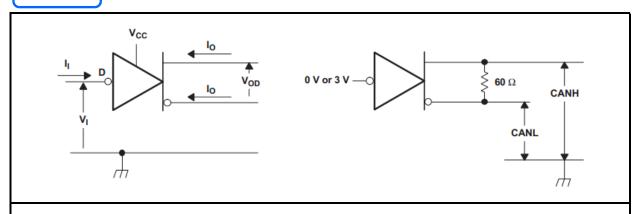


Figure 1 Definition of driver voltage and current test

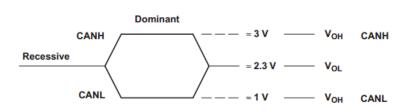


Figure 2 Bus logic voltage definition

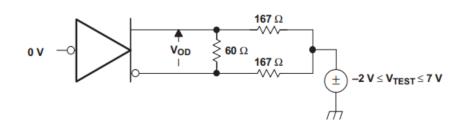
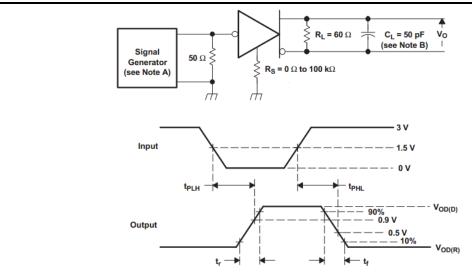



Figure 3 Driver VOD test circuit

A. Characteristics of input pulse generator: PRR is less than or equal to 500 KHz, duty cycle is 50%, tr is less than 6 ns, tf is less than 6 ns, Zo is 50

B and CL include instruments and fixed capacitors with an error of less than 20%.

Figure 4 Driver test circuit and voltage waveform

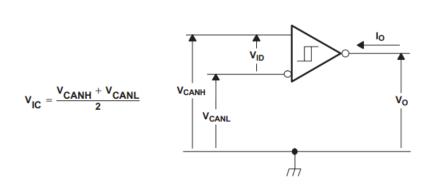
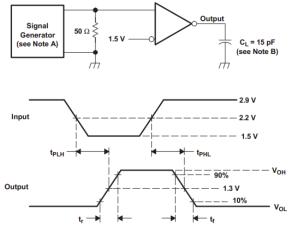



Figure 5 Receiver voltage and current definition

A. Characteristics of input pulse generator: PRR is less than or equal to 500KHz, duty cycle is 50%, tr is less than 6ns, tf is less than 6ns, Zo is 50

B and CL include instruments and fixed capacitors with an error of less than 20%.

Figure 6 Receiver test circuit and voltage waveform

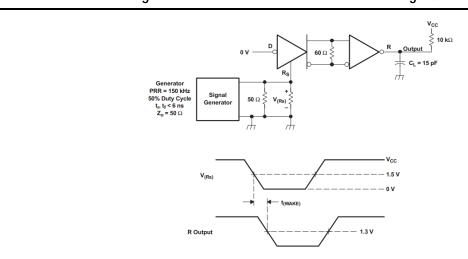
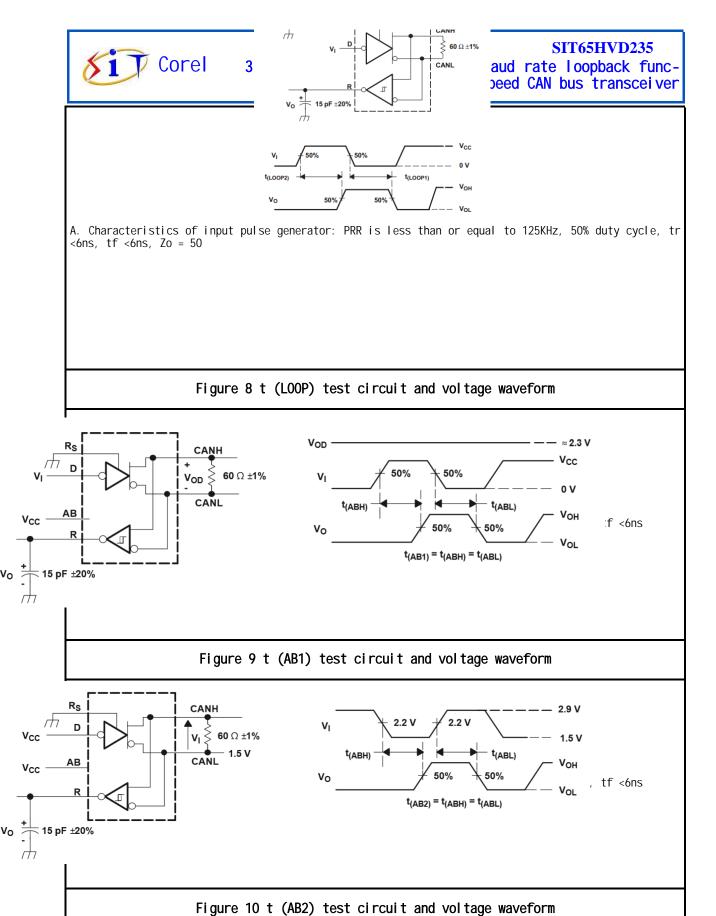



Figure 7 t (WAKE) test circuit and voltage waveform

expl ai n

1 resume

SIT65HVD235 is an interface chip used between CAN protocol controllers and physical buses. When combined with 3.3V microprocessors, microcontrollers (MCUs), and digital signal processors (DSPs) or equivalent protocol controllers equipped with CAN controllers, it can be applied in industrial automation, control, sensor and drive systems, motor and robot control, building and temperature control, telecommunications and base station control, as well as status monitoring. It supports speeds up to 1Mbps and is fully compatible with the "ISO 11898" standard.

2 short-circuit protection

The drive level of SIT65HVD235 has a current limiting protection function to prevent the drive circuit from short-circuiting to the positive and negative power supply voltage. When a short circuit occurs, the power consumption will increase. The short circuit protection function can protect the drive level from damage.

3 Over temperature protection

SIT65HVD235 It has overtemperature protection function. When the junction temperature exceeds 160 , the current of the driver level will be reduced, because the driver tube is the main energy consuming component, and the current reduction can reduce power consumption and thus reduce the chip temperature. At the same time, other parts of the chip still maintain normal operation.

4 Electrical transient protection

Electrical transients often occur in automotive applications, and SIT65HVD235's CANH and CANL have the function of preventing electrical transients from damaging.

5 control model

Three different operating modes are provided by the RS pin (pin 8): high speed mode, slope control mode and low power mode.

(1) High speed mode:

Applying a logic low level to the RS pin (pin 8) selects high-speed mode. High-speed operation is typically used in industrial applications. High-speed mode allows for output switching at the fastest possible rate and imposes no internal limits on the rise and fall times of the output. If high-speed transitions affect radiation performance, a slope control mode can be used.

If the application requires both high-speed and low-power standby modes, the mode selection pin can be directly connected to a general-purpose output pin of the microprocessor, MCU, or DSP. When the controller outputs a logic low level (<1.2 V), the device enters high-speed mode; when the controller outputs a logic high level (> 0.75 VCC), the device enters standby mode.

(2) Slope control mode

For many applications that still use unshielded twisted pair bus cables to reduce system costs, electromagnetic compatibility is critical. The device has added a slope control mode, which can reduce the electromagnetic interference caused by the rise and fall times of the driver and the harmonics generated as a result. By connecting a resistor between RS (pin 8) and ground or logic low voltage, the rise and fall slopes of the driver output can be adjusted. The slope of the driver output signal is proportional to the output current of the pin, and this slope control is achieved through an external resistor (typically 10k to 100k).

(3) standby mode

If a logic high level (> 0.75 VCC) is applied to the RS (pin 8), the device circuit will enter low current, listen-only standby mode. During this mode, the driver will be turned off, and the receiver will remain active. In this listen-only state, the transceiver is completely passive with respect to the bus. There will be no difference whether or not a slew control resistor is placed. When a rising edge of an active state (bus differential voltage> 900mV (typical value)) appears on the bus, the microprocessor can put the transceiver out of this low-power standby mode.

Mi croprocessor

The device senses bus activity and reactivates the driver circuit by applying a logic low level (<1.2V) to RS (pin 8).

6 Automatic baud rate loopback function

The SIT65HVD235 can be set to high level through input pin 5 (AB) to enter the automatic baud rate loopback mode. In this mode, the driver output is disabled, blocking the transmission path from pin D to the bus and the bus's transmission function, with the bus pins being set to inactive. The transmission path from the receiver to pin R remains normal or the bus maintains a receive state, allowing bus activity to be monitored. Additionally, the automatic baud rate loopback mode adds an internal logic loopback path from pin D to pin R, enabling local nodes to transmit synchronously without interfering with information on the bus. Therefore, if the CAN controller of a local node generates an error frame, it will not be transmitted to the bus but will only be detected by the local CAN controller. This is particularly helpful for determining whether the local node is set to the same baud rate as the network and whether it has been adjusted to the network baud rate. Automatic baud rate detection is most suitable for applications with known selected baud rates. For example, popular communication frequencies in industrial equipment include 125kbps, 250kbps, or 500kbps. Once the SIT65HVD235 enters automatic baud rate loopback mode, the first baud rate that the application software can handle is 125kbps. It then waits for another node on the bus to transmit information. If an incorrect baud rate is chosen, the local CAN controller will generate an error message due to the incorrect sampling time of the information. However, since the bus transmission function has been disabled, no other node will receive the error frame generated by the CAN controller of this node.

Then, the application will use the status register of the local CAN controller to determine the received message and error warning status, to confirm whether the set baud rate is correct. The warning status indicates that the error count of the CAN controller has been incremented. The received message status indicates that a valid message has been received. If an error occurs, the application will set the CAN controller to the next possible valid baud rate and then wait for another message. This process is repeated until a correct message is received. Therefore, the correct baud rate has been selected. At this point, the application sets pin 5 of the SIT65HVD 235 to a low level, putting the SIT65HVD235 into normal receive mode, thus enabling the bus transmission and reception functions of the transceiver to operate normally. If the AB pin is not used, it can be grounded (GND) or left open (open), because in the open state the chip will pull down the pin internally (default low level input).

SOP8, external dimensions

DIP8, external dimens-

	Packaç	ge size	
Symbol	Least value /mm	Representative va- lue /mm	Crest value /mm
A	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2		2.54TYP	
A3		1.525TYP	
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60
+ CS + + + + + + + + + + + + + + + + + +	A	A2 L	

Order information

Order code	Temperature	Package
SIT65HVD235DR	-40°C~125°C	SOP8
SIT65HVD235P	-40°C~125°C	DIP8

The tape packaging is 2500 beads per disc