

1. **DESCRIPTION**

The XL/XD3846 family of control devices provides all of the necessary features to implement fixedfrequency, current-mode control schemes while maintaining a minimum external parts count.The superior performance of this technique can be measured in improved line regulation,enhanced load response characteristics,and a simpler,easier-to-design control loop.Topological advantages include inherent pulse-by-pulse current limiting capability,automatic symmetry correction for push-pull converters, and the ability to parallel power modules while maintaining equal current sharing.

Protection circuitry includes built-in undervoltage lockout and programmable current limit, in addition to soft-start capability. A shutdown function is also available, which can initiate either a complete shutdown with automatic restart or latch the supply off. The XL/XD3846 features low outputs in the OFF state.

Other features include fully-latched operation, double-pulse suppression, deadline adjust capability, and a \pm 1% trimmed band gap reference.

2. FEATURES

- Automatic Feedforward Compensation
- Programmable Pulse-by-Pulse Current Limiting
- Automatic Symmetry Correction in Push-Pull Configuration
- Enhanced Load Response Characteristics
- Parallel Operation Capability for Modular Power Systems
- Differential Current Sense Amplifier with Wide Common Mode Range
- Double-Pulse Suppression
- 400-mA (Peak) Totem-pole Outputs
- ±1% Band Gap Reference
- Undervoltage Lockout
- Soft-Start Capability
- Shutdown Terminal
- 500-kHz Operation

3. APPLICATIONS

- Telecommunication Power Converters
- Industrial Power Converters

4. APPLICATION CIRCUIT EXAMPLE

5. PIN CONFIGURATIONS AND FUNCTIONS

PIN				
SOP16(W),DIP16	NAME	I/O	DESCRIPTION	
1	C/S SS	I	Current limit/soft-start programming	
2	V _{REF}	0	5.1-V reference voltage output	
3	C/S –	I	Current sense comparator inverting input	
4	C/S +	I	Current sense comparator non-inverting input	
5	E/A +	Ι	Error amplifier inverting input	
6	E/A –	Ι	Error amplifier inverting input	
7	COMP	I/O	Error amplifier output and input to the PWM comparator	
8	Ст	I	Oscillator frequency programming capacitor pin	
9	C _R	Ι	Oscillator frequency programming resistor pin	
10	Sync	I/O	Synchronization out from master controller or input of slave controller	
11	A Out	0	PWM drive signal output A, Pin11 and P14 are complementary	
12	GND	G	All signals are referenced to this node	
13	Vc	Ι	Bias supply input for output stage	
14	B Out	0	PWM drive signal output B, Pin11 and P14 are complementary	
15	V _{IN}	I	Bias supply input	
16	Shutdown	I	External shutdown signal input	

6. SPECIFICATIONS

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply Voltage (Pin 15)		36	V
Collector Supply Voltage (Pin 13)		36	V
Output Current, Source or Sink (Pins 11, 14)		400	mA
Analog Inputs (Pins 3, 4, 5, 6, 16)	-0.3	+V _{IN}	V
Reference Output Current (Pin 2)		-25	mA
Sync Output Current (Pin 10)		-5	mA
Error Amplifier Output Current (Pin 7)		-5	mA
Soft Start Sink Current (Pin 1)		-40	mA
Oscillator Charging Current (Pin 9)		5	mA
Power Dissipation at T _A = 25°C		800	mW
Power Dissipation at $T_c = 25^{\circ}C$		1500	mW
Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS- $001^{(1)}$	±2000		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22- C101 ⁽²⁾	±1000	V

[1] JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

[2] JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
VREF terminal external capacitance	1		2.2	μF

6.4 Thermal Information

		XL/X		
TYPICAL VAU	LE	DIP16	SOP16(W)	UNIT
		16 PINS	16 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	46	80	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	32	38	°C/W
R _{θJB}	Junction-to-board thermal resistance	24	42	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	15	9	°C/W
ψ _{JB}	Junction-to-board characterization parameter	24	43	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

6.5 Electrical Characteristics

T_A= -40°C to +85°C for the XL/XD3846; V_{IN}=15 V,R_T=10k, C_T=4.7 nF, T_A=T_J (unless otherwise noted)

PARAMETER	TEST CONDITIONS		UNIT		
		MIN	ТҮР	MAX	- Chill
REFERENCE					
Output Voltage	T _J = 25°C, I ₀ = 1 mA	4.85	5.10	5.35	V
Line Regulation	V _{IN} = 8 V to 36 V		5	30	mV
Load Regulation	$I_L = 1 \text{ mA to } 10 \text{ mA}$		3	20	mV
Temperature Stability	Over Operating Range, ⁽¹⁾		0.5		mV/°C
Total Output Variation	Line, Load, and Temperature $^{(1)}$	4.75		5.5	V
Output Noise Voltage	$ \begin{array}{l} 10 \text{ Hz} \leq f \leq 10 \text{ kHz}, \text{ T}_{\text{J}} \\ = 25^{\circ}\text{C}^{(1)} \end{array} $		150		μV
Long Term Stability	T _J = 85°C, 1000 Hrs ⁽¹⁾		10		mV
Short Circuit Output Current	V _{REF} = 0 V	-10	-35		mA
OSCILLATOR					
Initial Accuracy	T _J = 25°C	34	43	51	kHz
Voltage Stability	V _{IN} =8 V to 36 V		-1%	3%	
Temperature Stability	Over Operating Range ⁽¹⁾		-2%		
Sync Output High Level		3.9	4.35		V
Sync Output Low Level			2.3	2.5	V
Sync Input High Level	Pin 8 = 0 V	3.9			V
Sync Input Low Level	Pin 8 = 0 V			2.5	V
Sync Input Current	Sync Voltage = 3.9 V, Pin 8 = 0 V		1.3	1.5	mA
ERROR AMPLIFIER					
Input Offset Voltage			0.5	20	mV
Input Bias Current			-0.6	-2	μA
Input Offset Current			40	250	nA
Common Mode Range	V _{IN} = 8 V to 36 V	0		V _{IN} - 2 V	V
Open Loop Voltage Gain	$\Delta V_{O} = 1.2 \text{ to } 3 \text{ V}, \text{ V}_{CM}$ $= 2 \text{ V}$	80	105		dB
Unity Gain Bandwidth	$T_{J} = 25^{\circ}C^{(1)}$	0.5	0.7		MHz
CMRR	$V_{CM} = 0 V$ to 36 V, $V_{IN} = 36 V$	60	85		dB
PSRR	V _{IN} = 8 V to 36 V	65	80		dB
Output Sink Current	$V_{ID} = -15 \text{ mV to } -5 \text{ V},$ $V_{PIN7} = 1.2 \text{ V}$	2	6		mA
Output Source Current	V _{ID} = 15 mV to -5 V, V _{PIN7} = 2.5 V	-0.4	-0.5		mA
High Level Output Voltage	R _L = (Pin 7) 15 kΩ	4.3	4.6		V
Low Level Output Voltage	R _L = (Pin 7) 15 kΩ		0.7	1	V
CURRENT SENSE AMPLIFIER					
Amplifier Gain	V _{PIN 3} = 0 V, Pin 1 Open ⁽²⁾ , ⁽³⁾	2.4	2.75	3.2	V

These parameters, although ensured over the recommended operating conditions, are not 100% tested in production.
Parameter measured at trip point of latch with VPIN 5 = VREF, VPIN 6 = 0 V.

(2) Parameter measured at trip point of latch with VPIN 5 = VREF, V (3) Amplifier gain defined as: $G = \Delta V_{PIN7} / \Delta V_{PIN4}$; $V_{PIN4} = 0$ to 1.0 V

Electrical Characteristics (continued)

 $T_A = -40^{\circ}$ C to +85°C for theXL/XD3846; $V_{IN} = 15 V$, $R_T = 10k$, $C_T = 4.7 nF$, $T_A = T_J$ (unless otherwise noted)

DARAMETER		XL/XD3846			
FANAIVIETEN		MIN	ТҮР	MAX	ONIT
$\begin{array}{l} Maximum \text{Differential Input Signal} \\ (V_{\text{PIN 4}}\text{-}V_{\text{PIN 3}}) \end{array}$	Pin 1 Open ⁽²⁾ ; R _L (Pin 7) = 15 kW	1.1	1.2		V
Input Offset Voltage	V _{PIN 1} = 0.5 V, Pin 7 Open ⁽²⁾		5	25	mV
CMRR	V _{CM} = 1 V to 12 V	60	75		dB
PSRR	V _{IN} = 8 V to 36 V	60	70		dB
Input Bias Current	V _{PIN 1} = 0.5 V, Pin 7 Open ⁽²⁾		-2.5	-10	μΑ
Input Offset Current	V _{PIN 1} = 0.5 V, Pin 7 Open ⁽²⁾		0.08	1	μΑ
Input Common Mode Range		0		V _{IN} -3	V
Delay to Outputs	$T_{J} = 25^{\circ}C^{(1)}$		300	700	ns
CURRENT LIMIT ADJUST					
Current Limit Offset	V _{PIN 3} = 0 V, V _{PIN 4} = 0 V, Pin 7 Open ⁽²⁾	0.45	0.5	0.55	V
Input Bias Current	V _{PIN 5} = V _{REF} , V _{PIN 6} = 0 V		-10	-30	μΑ
SHUTDOWN TERMINAL					
Threshold Voltage		250	350	400	mV
Input Voltage Range		0		V _{IN}	V
$Minimum Latching Current (I_{PIN1})$		3.0	1.5		mA
Maximum Latching Current (I _{PIN1})			1.5	0.8	mA
Delay to Outputs	$T_{J} = 25^{\circ}C^{(1)}$		300	600	ns
OUTPUT					
Collector-Emitter Voltage		30			V
Collector Leakage Current	V _c = 30 V ⁽⁶⁾			200	μA
	I _{SINK} = 20 mA		0.1	0.4	
Output Low Level	I _{SINK} = 100 mA		0.4	2.1	V
O to this based	I _{SOURCE} = 20 mA	13	13.5		
Output High Level	I _{SOURCE} = 100 mA	12	13.5		V
Rise Time	$C_L = 1 \text{ nF}, T_J = 25^{\circ}C(1)$		50	300	ns
Fall Time	$C_L = 1 \text{ nF}, T_J = 25^{\circ}C_{(1)}$		50	300	ns
UNDERVOLTAGE LOCKOUT					
Start-Up Threshold			7.7	8.2	V
Threshold Hysteresis			0.75		V
TOTAL STANDBY CURRENT					
Supply Current			18	23	mA

(4) Current into Pin 1 ensured to latch circuit in shutdown state.

(5) (6) Current into Pin 1 ensured not to latch circuit in shutdown state.

Applies to XL/XD3846 only due to polarity of outputs.

6.6 Typical Characteristics

7. DETAILED DESCRIPTION

7.1. Overview

The XL/XD3846 family of control devices provides the necessary features to implement off-line or DC-to-DC fixed- frequency, current-mode control schemes with a minimal external parts count. Internally implemented circuits include under-voltage lockout featuring start-up current less than 1 mA, a precision reference trimmed for accuracy at the error amplifier input, logic to insure latched operation, a PWM comparator which also provides current limit control, and a totem pole output stage designed to source or sink high-peak current. The output stage, suitable for driving either N-Channel MOSFETs or bipolar transistor switches, is low in the off state.

7.2. Functional Block Diagram

7.3. Feature Description

7.3.1 Current Sense Amplifier

The current sense amplifier may be used in a variety of ways to sense peak switch current for comparison with an error voltage. Referring to *Functional Block Diagram*, maximum swing on the inverting input of the PWM comparator is limited to approximately 3.5 V by the internal regulated supply. Accordingly, for a fixed gain of 3, maximum differential voltages must be kept below 1.2 V at the current sense inputs.

Feature Description (continued)

A small RC filter may be required in some applications to reduce switch transients. Differential input allows remote, noise free sensing.

Figure 3. Current Sense Amplifier Connection

7.3.2 Oscillator

By implementing the oscillator using all NPN transistors, the XL/XD3846 achieves excellent temperature stability and waveform clarity at frequencies in excess of 1 MHz.

Referring to Figure 4, an external resistor R_T is used to generate a constant current into a capacitor C_T to produce a linear sawtooth waveform. Oscillator frequency may be approximated by selecting R_T and C_T such that:

$$f_{OSC} = \frac{2.2}{R_T C_T}$$

Figure 4. Oscillator Circuit

7.4. Device Functional Modes

7.4.1 Current Limit

One of the most attractive features of a current-mode converter is the ability to limit peak-switch currents on a pulse-by-pulse basis by simply limiting the error voltage to a maximum value.

7.4.2 Shutdown

The shutdown circuit was designed to provide a fast acting general purpose shutdown port for use in implementing both protection circuitry and remote shutdown functions. The circuit may be divided into an input section consisting of a comparator with a 350-mV temperature compensated offset, and an output section consisting of a three transistor latch. Shutdown is accomplished by applying a signal greater than 350 mV to pin 16, causing the output latch to fire, and setting the PWM latch to provide an immediate signal to the outputs.

8. APPLICATION AND IMPLEMENTATION

Note

Information in the following applications sections is not part of the Xinluda component specification, and Xinluda does not warrant its accuracy or completeness. Xinluda's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1. Application Information

The XL/XD3846 family of control devices provides all of the necessary features to implement fixed frequency, current mode control schemes while maintaining a minimum external parts count. The superior performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and a simpler, easier to design control loop. Topological advantages include inherent pulse-by-pulse current limiting capability, automatic symmetry correction for push-pull converters. Protection circuitry includes undervoltage lockout and programmable current limit in addition to soft-start capability. A shutdown function is also available which initiates either a complete shutdown with automatic restart or latch the supply off.

8.2. Typical Application

Figure 5. Typical Application Diagram

8.2.1 Design Requirements

Table 1 shows the design parameters for this application.

¥	
DESIGN PARAMETER	TARGET VALUE
Typical efficiency	85%
Switching frequency	880 kHz
Pulse by pulse current limit threshold	1 A

8.2.2 Detailed Design Procedure

This section details the design procedure based on the design requirements.

8.2.2.1 Drive Switching Frequency

Output deadtime is determined by the external capacitor, C_T , according to the formula:

$$Td(\mu s) = 145C_T(\mu F) \left[\frac{ID}{ID - \frac{3.6}{RT(k\Omega)}} \right]$$

2.2

where

ID = Oscillator discharge current at 25°C; typically is 7.5.

For large values of R_T : $\tau d (\mu s) \approx 145 CT (\mu F)$. Oscillator frequency is approximated by the formula:

Figure 6. Error Amplifier Output Configuration

8.2.2.3 Parallel Operation Configuration

Slaving allows parallel operation of two or more units with equal current sharing.

Figure 7. Parallel Operation

8.2.2.4 Design Pulse by Pulse Current Limit Threshold

Figure 8. Pulse by Pulse Current Limiting

8.2.2.5 Soft-Start and Shutdown,Restart Function Design

Figure 9. Soft-Start and Shutdown, Restart Functions

8.2.3 Application Curves

9. Power Supply Recommendations

The VIN power terminal for the device requires the placement of low esr noise-decoupling capacitance as directly as possible from the VIN terminal to the GND terminal. Ceramic capacitors with stable dielectric characteristics over temperature are recommended, such as X7R or better.

The VC power terminal for the device requires the placement of resistance as directly as possible from the VC terminal to the VIN terminal.

10. Layout

10.1. Layout Guidelines

- Place a low ESR and ESL decoupling capacitor C_{REF} in the 1- μF to 2.2- μF range, preferably ceramic, from VREF pin to GND.
- The EA+ is a non-inverting input, the EA- is an inverting input and the COMP is the output of the error amplifier. Place resistor and capacitor series network between EA+ pin and COMP pin, and reduce the trace of resistor and capacitor series network as much as possible.
- Place a low ESR and ESL capacitor C_T , preferably ceramic, from CT pin to GND, and place C_T close to XL/XD3846 as much as possible.
- Place a resistor R_T from RT pin to GND, and place R_T close to XL/XD3846 as much as possible.

10.2. Layout Example

Figure 12. XL/XD3846 Layout Example

11. ORDERING INFORMATION

Part Number	Device Marking	Package Type	Body size (mm)	Temperature (°C)	MSL	Transport Media	Package Quantity
XL3846	XL3846	SOP16(W)	10.45*7.5	-40 to +85	MSL3	T&R	1000
XD3846	XD3846	DIP16	19.05*6.35	-40 to +85	MSL3	Tube 25	1000

Ordering Information

12. DIMENSIONAL DRAWINGS

[if you need help contact us. Xinluda reserves the right to change the above information without prior notice]