Chinese chips
  • From 'available' to 'trusted', GigaDevie GSL6188 fingerprint sensor certified by Microsoft ESS Jan 12, 2026
    On December 24th, GigaDevie's GSL6188 MoC (Match on Chip) PC fingerprint recognition sensor has successfully passed the Windows Hello Enhanced Sign in Security authentication. This marks that GigaDevie's software and hardware design and system integration capabilities in the field of high security biometric chips have reached international mainstream standards, providing authoritative endorsement for the product to enter the global market. Windows Hello Enhanced Login Security Certification is a hardware security standard established by Microsoft to enhance the overall login security of Windows devices. It requires hardware such as sensors to have high security features and be able to locally isolate and protect biometric data, providing users with a seamless and high-intensity authentication experience. The GigaDevie GSL6188 fingerprint sensor adopts a highly integrated Match on Chip (MoC) architecture, which achieves excellent performance with FRR less than 1.5% and FAR less than 0.002% through dynamic noise reduction algorithm and multi-scale feature fusion algorithm, surpassing the standard requirements of Microsoft Windows Hello for fingerprint recognition. This product has a highly integrated security architecture, built-in independent microcontroller and secure storage, achieving hardware isolation of fingerprint matching and templates, simplifying peripheral design. In terms of security, GSL6188 pre burns certificates during production and supports TPM 2.0 key management and VBS virtualization for isolated operation, ensuring that the fingerprint authentication process runs in a trusted execution environment. In addition, the product also has strong anti-counterfeiting capabilities. With the help of self-developed deep learning algorithms, it can significantly enhance the defense against 2.5D and 3D forged fingerprints. GigaDevie Vice President and General Manager of Sensor Business Unit, Zhi Jun, stated, "The GSL6188 has passed the Windows Hello Enhanced Login Security Certification, which is an important achievement of GigaDevie's long-term technological investment in high-performance and high security biometric sensing. This demonstrates that our product can meet the stringent security requirements of international advanced PC manufacturers. In the future, we will continue to strive to provide more fingerprint biometric solutions, offering high-quality choices that combine security and convenient user experience to the global market.
  • Striving to be the "game-changer" in China's analog chip industry, Novosense is heading towards the global market
    Striving to be the "game-changer" in China's analog chip industry, Novosense is heading towards the global market Jan 09, 2026
    The chip industry continues to develop, and China's path of independent research and development is thriving. Novosense, as a core enterprise in domestic analog chips, is leading the way. Not only has it continuously increased its market share in China, but it has also become a key player in the global supply chain, and together with a group of outstanding Chinese chip companies, it is changing the industry landscape. How can Chinese chip companies grow from scratch to 1, and then from 1 to 10,000? Recently, Yao Di, Vice President of Novosense, stated in a recent external exchange that Novosense's "Rooted in China, Expanding to the World" relies on systematic capabilities. Currently, the company has already deployed some overseas production capacity, providing leading products to the market based on reliability and efficiency.     Accuracy, reliability, and response efficiency constitute the "moat" of Novosense The competition in the global analog chip market is essentially a dual contest of "performance + trust". Yao Di believes that Novosense has been able to break through from hundreds of domestic enterprises and become a partner of leading enterprises in the global automotive, industrial, and other fields, primarily because it has built a solid "moat" in three dimensions: precision, reliability, and response efficiency. Accuracy is the "core soul" of analog chips, directly determining the "sensory ability" of electronic systems. Yao Di cited the "gain with speed" function of cars as an example. The analog chip needs to first sense physical signals such as vehicle speed and external noise, transmit them to the central control system, and then send instructions to "increase/decrease volume" to the speaker. In this process, the accuracy and sensitivity of signal conversion directly affect the functional experience. "Just like a hand touching a lit candle will immediately withdraw, if the reaction is 1 second slow, the skin tissue may be burned," the analog chip has extremely high requirements for signal response speed and sensitivity. Novosense has deeply invested in high-precision technology, developing chips capable of accurately converting physical signals into electrical signals. Whether it's voltage acquisition for automotive battery management systems or temperature detection for industrial equipment, these chips can meet customers' stringent accuracy requirements. This is one of the key reasons why many customers choose Novosense for their smart driving system collaborations. Reliability is the "bottom line" for analog chips, especially in long-life scenarios such as automotive and industrial applications, where no compromise is acceptable. Yao Di emphasized that while an automobile may only have 1-2 "brains" (main chips), the number of analog chips can range from hundreds to thousands. "If even one of these analog chips malfunctions, the entire system could potentially break down." Moreover, considering that automobiles typically have a lifespan of 10-20 years, these analog chips must also withstand harsh environments such as high temperatures and high-frequency vibrations in the engine compartment. To this end, Novosense has invested significantly more resources than the industry average to establish a reliability control system: the proportion of quality team members has been maintained at 8%-10% for a long time; in the production process, strategic cooperation has been established with leading global wafer fabs and packaging and testing factories to ensure quality from the source; at the same time, a large number of quality resident teams and engineering resident teams have been stationed in foundries for long-term monitoring of the quality of every production process, including encapsulation and pin extraction. Its automotive-grade chips have passed rigorous testing and demonstrated excellent long-term stability, which is why top-tier wafer fabs choose to deeply collaborate with Novosense. Only a reliable design solution can fully leverage the value of advanced manufacturing processes. 03 Response efficiency is a "differentiating advantage" for Novosense and even Chinese chip companies in global competition. Chinese companies possess a "speed" that overseas giants lack. Yao Di mentioned that Novosense can quickly customize and develop products according to customers' personalized needs. This agility is particularly important in the rapid iteration of the automotive industry. Faced with urgent supply demands, Novosense can efficiently leverage supply chain resources such as wafer fabs and packaging factories, and achieve rapid response through a mature collaborative mechanism. This demonstrates the flexibility of delivery in automotive chip applications and lays the foundation for further deepening cooperation.   The analog chip is currently undergoing reliability testing   Novosense hot sale part numbers in the global market:   NSI8210N0-DSPR NSI8210N1-Q1SPR NSi8120N0/NSI8220N0-DSPR NSi8120N1 NSI8220N1-DSPR NSi8141W1 NSI8241W1-DSWR NSi8141S0 NSi8141S1 NSI8260W0-DSWR NSi8261S1-DSSR NSi8262W0-DSWR NSi8262W1-DSWR NSi8100W NSI1050-DDBR (DUB8) NSI1050-DSWR (SOW16) NCA1042-DSPR NCA1051N-DSPR NSD1025-DSPR NSD1624-DSPR NSi6801TC-DDBR (DUB8) NSI6611ASC-Q1SWR NSI1311-DSWVR NSI1300D05-DSWVR NSi1200-DSWVR NSI1306M25-DSWR    
  • New Product Launch | Chipanalog Microelectronics CA-DV8008 I²C Controlled 8-Channel Low-Side Driver Jan 06, 2026
    In the fields of home appliances and industrial control, multi-load drives often face the challenges of limited controller GPIO resources and high system costs. To address this challenge, Chipanalog has officially launched the CA-DV8008—an eight-channel low-side driver controlled by I²C. This device significantly optimizes system resource usage and reduces overall solution costs through an efficient serial-to-parallel control architecture, providing a highly integrated and reliable domestic chip solution for multi-load drive applications.   01 Product Overview   The CA-DV8008 is an eight-channel low-side driver controlled by I²C. This device uses a serial interface to parallel output control method, which can significantly save GPIO resources of the main controller, simplify system design, and effectively reduce hardware costs.   Each channel supports a sinking current capability of 500mA, the output port withstand voltage is up to 50V, and the built-in clamping diode provides a demagnetizing circuit when inductive loads are turned off. It is suitable for driving various loads such as stepper motors, DC motors, relays, and solenoids.   The CA-DV8008 supports a high-speed I²C bus up to 400kHz and has three hardware address configuration pins. It supports up to eight CA-DV8008s connected to the same I²C bus, enabling centralized control of 64 outputs. The SCL and SDA pins use CMOS logic levels, and the logic supply voltage VCC supports a wide input range of 3V to 5.5V, allowing direct connection to 3.3V or 5V microcontrollers and sharing a power supply.   The CA-DV8008 is available in SOIC16-NB and TSSOP16 packages, with an ambient operating temperature (TA) range of -40°C to +125°C, meeting the requirements of household appliances and industrial applications. Simplified Circuit Block Diagram 02 Features   Eight-channel low-side output, single-channel 500mA sink current capability (25°C, single-channel enable), single-channel 250mA sink current capability (25°C, eight-channel enable, SOIC16-NB package), output port voltage up to 50V, built-in clamping diode for inductive loads, input I²C control, supports clock rates up to 400kHz, SCL/SDA pins CMOS logic level, 3 addressable pins, up to 8 CA-DV800 chips can be connected on the same bus, 8VCC power supply voltage range: 3V~5.5V, ambient operating temperature range: –40°C ~ 125°C, available in SOIC16-NB and TSSOP16 package options.   03 Typical Application Scenarios   Motion Control: Stepper motor drive, DC brushed motor drive Power Switches: Relay drive, contactor control, solenoid drive Lighting Systems: Multi-channel LED drive and dimming control Signal Distribution: Line driver, logic buffer and level shifter Home Appliances and Industrial Automation: Multi-channel actuator control, valve drive, electromagnet control   The CA-DV8008 can drive two four-phase five-wire stepper motors. The logic-side power supply VCC can share the same power supply as the microcontroller, supporting a supply voltage range of 3V to 5.5V. During use, SCL and SDA need to be pulled up to VCC through resistors. The device address is set by shorting the A2~A0 pins to VCC or GND. The CA-DV8008 integrates a clamping diode, which is connected to the system's high-voltage power supply during application to provide a freewheeling path when the inductive load is turned off. Typical Application Circuit—Driving Stepper Motors The CA-DV8008 can also be used to drive seven-segment or eight-segment common-anode LED digital tubes. Typical Application Circuit—Driving LED Digital Tubes
  • Continental Group collaborates with Novesense to create safer automotive pressure sensor chips
    Continental Group collaborates with Novesense to create safer automotive pressure sensor chips Feb 10, 2025
    Continental Group collaborates with Novesense to create safer automotive pressure sensor chips   On October 24, 2024, the 2024 Continental China Experience Day, hosted by Continental Group, was held in Gaoyou City, Jiangsu Province. Nearly 200 guests from the upstream and downstream of the automotive industry chain were invited to attend the conference and engage in in-depth dialogue on the collaborative development and future trends of the automotive industry, jointly exploring future market forms and opportunities. Wang Shengyang, founder, chairman, and CEO of Novosense, and Dr. Zhao Jia, director of Novosense Sensor Product Line, were invited to attend. During the event, Novosense and Continental Group announced a strategic partnership to jointly develop automotive pressure sensor chips.   In this collaboration, both parties will focus on jointly developing automotive grade pressure sensor chips with functional safety features. The newly developed pressure sensor chip will be based on Continental's next-generation global platform, with a focus on improving reliability and accuracy. It can be used to achieve safer and more reliable systems for automotive airbags, side collision monitoring, and battery pack collision monitoring.
  • ovosense micro car specification level 4/8-way half bridge drive NSD360x-Q1
    ovosense micro car specification level 4/8-way half bridge drive NSD360x-Q1 Feb 10, 2025
    Novosense micro car specification level 4/8-way half bridge drive NSD360x-Q1: multi load compatibility, enhancing the flexibility of automotive domain control systems     The Novosense NSD3604/8-Q1 series multi-channel half bridge gate driver chip covers 4/8 half bridge drivers and can drive at least 4 DC brushed motors, achieving multi-channel high current motor driving. It can also be used as a multi-channel high side switch driver. Very suitable for multi motor or multi load applications, such as car window lifting, electric seats, door locks, electric tailgates, and proportional valves for body control applications.     ◆ Wide operating voltage: 4.9V-37V (maximum 40V) ◆ 4, 8-channel half bridge gate drive ◆ Configurable timing charge discharge current drive (CCPD), optimized EMC performance ◆ Integrated 2-level charge pump for 100% PWM ◆ Integrated 2-channel programmable wide mode op amp  
  • National Technology Invited to Participate in 2024 Intel
    National Technology Invited to Participate in 2024 Intel Feb 10, 2025
    Draw a blueprint together! National Technology Invited to Participate in 2024 Intel ®  LOEM Summit November 5-7, 2024, Intel 2024 ®  The LOEM Summit was grandly held in Bangkok, Thailand, and National Technology Co., Ltd. (hereinafter referred to as "National Technology"), as Intel's global partner, was invited to participate in the summit. This summit provides an important platform for 200 Intel business partners from around the world to enhance communication and connection, share development experiences, and actively explore new opportunities in the future. Taking this opportunity, National Technology showcased its fourth generation trusted computing chip NS350, high-precision metering battery management chip NB401, and related application cases at the summit, showcasing its product capabilities.   NS350 is the fourth generation trusted computing chip of National Technology, which has advantages such as high security, high performance, and great value. It is designed based on 40nm process, supports I2C and SPI interfaces, and provides packaging forms such as QFN32 and QFN16. It complies with China's TCM2.0 trusted password module standard (GM/T 0012-2020) and the international TPM2.0 (Spec 1.59) trusted computing standard. The chip has passed the CC security function testing and security assurance assessment by the international third-party authoritative testing agency THALES/CNES, and has obtained the CC EAL4+certification certificate issued by the French National Agency for Information Systems Security (ANSSI). The chip is compatible with international mainstream operating systems such as Windows, Linux, BSD UNIX, as well as domestic operating systems such as Galaxy Kirin, Tongxin, Fangde, and Shenzhou NetEase Government Edition Windows. It can be used in fields such as PC, server platforms, and embedded systems to protect information system security and effectively resist various attacks from the network. The national technology collaborative negative electrode material business develops electrochemical battery measurement algorithms, with core technological advantages supporting battery safety measurement and industry-leading high-precision SOC measurement algorithms. It provides AFE, MCU, BMS, and algorithm overall solutions for the consumer, industrial, and automotive electronics fields.   NB401 is a high-precision metering battery management chip launched by National Technology for the consumer market. The product integrates a high-precision power calculation method and has multiple functions such as battery monitoring, metering, protection, and certification. It can support the management and metering of 2-4 series of lithium-ion batteries or lithium polymer batteries. The chip integrates two 16 bit high-precision ADCs for voltage (or temperature) and current acquisition, as well as hardware protection and wake-up functions. It supports SMBus communication, intelligent charging management, and multiple safety certifications, with ultra-low power consumption characteristics, which can meet the needs of most battery management or metering applications in the consumer electronics field. It is suitable for battery pack applications in electronic devices such as laptops, tablets, mobile phones, cameras, drones, power tools, and power banks.

Need Help? Chat with us

leave a message
For any request of parts price or technical support and Free Samples, please fill in the form, Thank you!
Submit

Home

Products

whatsApp

contact